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Preface

This is the open access version of the fully revised second edition (2012) of “Salinity and Tides
in Alluvial Estuaries”, first published by Elsevier Publications in 2005. This open access edition
has been fully updated, using the latest insights in the field of estuary hydrodynamics. It is freely
available at www.salinityandtides.com. This web site also links to a wide range of applications
in 27 estuaries and includes valuable data and information that other researches may want to
use.

As it is, this remains the only book on alluvial estuaries that presents an integrated theory on
estuary shape, estuary hydrodynamics, mixing and salt intrusion. Traditional publications focus
on sub-disciplines: the hydrodynamics, the mixing (e.g. Fischer et al., 1979), the salinity, or the
morphology, but seldom are these fields considered as interdependent. Although the literature on
tidal hydrodynamics is vast, most concentrates on flow in prismatic (i.e. constant cross-section)
channels, or, if a variable topography is used, then authors make use of 2-D or 3-D simulations
using an imposed bathymetry.

By this fragmented approach we miss opportunities. An estuary system and its component
parts work as a single physical entity, where potential and kinetic energy is dissipated through
the interaction between water, sediment and salinity. This interaction leads to clear patterns in
the morphology, the hydrodynamics and the salinity, many of which can be surprisingly simple
and even predictable. It was this realisation that inspired me to write this book.

An estuary is the transition between a river and a sea. There are two main drivers: the
river that discharges fresh water into the estuary and the sea that fills the estuary with salty
water, on the rhythm of the tide. The salinity of the estuary water is the result of the balance
between two opposing fluxes: a tide-driven saltwater flux that penetrates the estuary through
mixing, and a freshwater flux that flushes the saltwater back. Both fluxes strongly depend on
the topography: the salt water flux because the amount of water entering the estuary depends
on the surface area of the estuary; and the fresh water flux, because the cross-sectional area of
the estuary determines the efficiency of the fresh water flow to push back the salt.

So, the topography is crucial. It provides the most important boundary condition for tidal
hydraulics, mixing and salt intrusion. One of the innovations of this book is that, throughout,
it works with the natural topography of alluvial estuaries. This natural topography is one with
converging banks following an exponential function. Both the width and the cross-sectional area
obey exponential functions. Moreover, in coastal plain estuaries, the depth is constant and there
is no bottom slope. Estuaries in coastal areas with a strong relief are generally too short for this
type of estuary to develop. They form a special category of alluvial estuaries where standing
waves occur and where the depth decreases in the upstream direction. These estuaries have been
described by others (e.g. by Wright et al., 1973; Prandle, 2003). The topography of alluvial
estuaries, whether short or long, can be characterised by a single parameter: the convergence
length: the length scale of the exponential function. This length scale is a key parameter for
understanding tidal and mixing processes. In classical literature on tidal hydraulics, tidal mixing
and salt intrusion, this parameter has been overlooked more often than not, leading to incom-
plete, or even flawed, dimensional analysis. The reason probably lies in the fact that the early
literature was based on laboratory experiments in prismatic channels. This book is unique in
that it systematically integrates these natural topographies with tidal movement, mixing and
salt intrusion.

Mixing in estuaries is driven by both the tide and the density gradient. The density gradient
induces vertical mixing, while the tide mainly causes horizontal mixing through tidal trapping

iii
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and residual circulation (and to a minor extent turbulent mixing). It is recognised that resid-
ual circulation is a dominant mechanism, particularly near the mouth of the estuary, but it is
poorly understood. Several mixing mechanisms have been well documented in the literature,
such as the vertical density-driven circulation and turbulence-driven mixing, but, until now, no
consistent theory exists for residual circulation. This book demonstrates that residual circulation
is strongly related to an estuary’s topography, and particularly to its width, which in alluvial
estuaries is predictable. The book therefore provides an integrated mixing theory and a practi-
cal computational approach for the prediction of salt intrusion and tidal propagation in alluvial
estuaries.

The result is a book that tries to build a bridge between science and engineering. It is use-
ful both for students, practitioners or scientists from related fields (such as environmentalists,
ecologists, or geographers) who require relatively simple analytical equations to describe estuary
behaviour. It deals with the theoretical background in detail, but also provides simple guide-
lines and examples for practical applications. It provides tools with which human interference in
estuary dynamics can be described and predicted, resulting from, for instance: upstream fresh
water abstraction, dredging or sea level rise. In describing the interactions between tide, topog-
raphy, water quality and river discharge, it provides useful information for hydraulic engineers,
morphologists, ecologists and people concerned with water quality in alluvial estuaries.

This book is based on years of fieldwork and research in different parts of the world and
involves the work of many people, many of them former students (I acknowledge them below). I
am grateful to all these people who have contributed to the results and will hopefully continue
to do so, because there still is much to discover.

Delft,
Hubert H.G. Savenije
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Notation

The following
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symbols are used in this book:

Cross-sectional convergence length [L]

Cross-sectional area [L?]

Amplitude of the cross sectional area [L?]

Cross-sectional area of the flood channel [L?]

Cross-sectional area at the estuary mouth [L?]

Convergence length of the stream width [L]

Stream width [L]

Width at which there are no ebb and flood channels [L]
Storage width [L]

Width at the estuary mouth [L]

Wave celerity [L/T)]

z-dependendent coefficient equal to the ratio between dispersion coefficient
and the fresh water velocity [-]

Classical wave celerity [L/T]

Convergence term (in Chapter 3) [-]

Coefficient of Chézy [L°®/T)|

Sediment transport factor [L(2~™T("~1)

Longitudinal dispersion [L2/T]

Damping term (in Chapter 3) [-]

Longitudinal dispersion due to residual circulation in ebb and flood channels
[L2/1)

Longitudinal dispersion due to gravitational circulation [L2/T)]
Steady state dispersion [L2?/T]

Tide driven dispersion [L?/T]

Diameter of the bed material that is exceeded by 50% of the sample weight [L]
Pumping efficiency: relative difference of the tidal velocity amplitude between
flood and ebb currents [-]

Tidal excursion [L]

Tidal excursion at the estuary mouth [L]

Dissipated energy [ML2T 2]

Potential energy per tidal period [ML2T 2]

Kinetic energy per tidal period [ML2T~2]

Friction factor [-]

Adjusted friction factor [-]

Darcy-Weisbach friction factor

Force per unit mass (in Chapter 2) [MT~2L~2]

Mass flux (in Chapter 5) [M/T]

Froude number (U/cp) or Tidal Froude number (v/¢) [-]
Celerity damping function [-]

Densimetric Froude number (v/c) [

Salt flux in the ebb channel [M/T)]

Salt flux in the flood channel [M/T]

Acceleration due to gravity [L/T?]

Stream depth [L]
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Tidal average stream depth [L]

NOTATION

Depth at the estuary mouth, or constant tidal average stream depth [L]

Tidal range [L]

Slack tidal range [L]

Side slope [-]

Water level slope [-]

Density slope [-]

Bottom slope [-]

Residual depth gradient [-]

Tidal wave number [L~}]

Coefficient of proportionality in Lacey’s equation [T%-°L—0-3]
Manning’s coefficient (in Chapter 2-3) [L(1/3)T( —1)]]
Dimensionless Van den Burgh’s coefficient (in Chapter 4-5) [-]
Length of the tidal intrusion [L]

Salt intrusion length [L]

Length of a ebb-flood channel loop [L]

Length of tidal intrusion [L]

Moment per unit volume driven by gravitational circulation [ML~1T~
exponent [-] or Manning’s roughness coefficient [L({ — 1/3)T)
Canter-Cremers Estuary number [-]

Estuary-type number [-]

Estuarine Richardson number [-]

Prandle’s estuary number [-]

Dimensionless numbers (i=1,2,3,4,5,P,Q,D) (in Chapter 5) [-]
Surface area of the estuary [L?]

Wetted perimeter [L]

Flood volume [L3]

Coefficient of the advective term (in Chapter 5) [L/T]
Discharge [L*/T)

Bankfull discharge [L®/T)

The freshet or fresh water flushing [L*/T]

Tidal peak discharge [L*/T)

The river discharge [L3/T)]

Sediment discharge [L®/T]

Tidal discharge [L3/T)

Dry season fresh water discharge [L3/T)

Net rainfall (the difference between rainfall and evaporation) [L/T]
storage width ratio [-]

Net rainfall rate during the dry season [L/T]

Friction term (in Chapter 2) [-]

Friction term (in Chapter 3) [-]

Resistance term [T

Dronkers’ friction term [-]

Lorentz linearised friction factor (in Chapter 2) [T~1]
Lorentz linearised friction factor (in Chapter 3) [-]

Source term [L2/T)]

Salinity [M/L3]

Distance travelled by a water particle (in Chapter 2) [L]
Steady state salinity (in Chapter 5) [M/L3]

Fresh water salinity [M/L?]

Time [T]

Tidal period [T]

Particle travel time [T]

Time scale for the system response [T

Time scale of the discharge reduction [T

Time scale for the system response (steady state) [T]

’]
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Mean cross-sectional flow velocity [L/T]

Velocity of the bankfull discharge [L3/T)|

Velocity of the fresh water discharge [L/T)|

Stokes drift velocity [L/T)]

Flow velocity (averaged over the cross-section) [L/T]
velocity of the moving particle [L/T)]

Distance [L]

Dimensionless tidal range H/Hj [-]

Vertical ordinate [L]

Water level [L]

Bottom elevation [L]

Mixing coefficient (in Chapter 5) [L-1]

Shape factor [-]

Coefficient for the length of an ebb-flood interaction cell [-]
Ideal dimensionless amplitude [L]

Dispersion reduction rate (in Chapter 5) [-]
Asymptotic ideal dimensionless amplitude [-]
Coefficient for the length of an ebb-flood interaction cell [-]
The shape number [-]

Error term (in Chapter 2-3) [-]

Relative sediment density (in Chapter 2) [-]

relative depth gradient L]

Damping rate of tidal range [L1]

Damping rate of tidal velocity amplitude [L !]

The damping number (in Chapter 3) [-]

Phase lag between HW and HWS, or LW and LWS [-]
Tidal amplitude [L]

Tidal amplitude at estuary mouth [L]

Length of the tidal wave [L]

The celerity number (in Chapter 3) [-]

The velocity number (in Chapter 3) [-]

Real number=3.1414.. representing 180 degrees |-]
Dimensionless argument (representing a moving observer in the x-t plane) [-]
Density of the water [ML~3]

Dimensionless salinity [-]

Tidal velocity amplitude [L/T)]

Angle or phase lag [-]

Relative influence of river discharge: Uy /v []
Harmonic function of the tidal velocity [-]

The friction number [-]

Harmonic function of the water level [-]

Angular velocity [T~!]

Abbreviations and subscripts:

LWS
HWS
Lw
HW
TA

Operators:
A
d

Low water slack
High water slack
Low water

High water
Tidal average

Finite difference
Lagrangean difference






Chapter 1

INTRODUCTION: DESCRIPTION AND
CLASSIFICATION OF ALLUVIAL ESTUARIES

1.1 What is an estuary?

The simplest definition of an estuary is ”Where the river meets the sea”. Dionne (1963) defined
it very nicely as: ”.. an inlet of the sea reaching into the river valley as far as the upper limit
of tidal rise..”. A unnecessarily lengthy and unfortunately erroneous definition, which is very
commonly heard, is attributed to Pritchard (1967): ” An estuary is a semi-enclosed coastal body
of water which has free connection to the open sea and within which seawater is measurably
diluted with fresh water derived from land drainage”. This definition is clearly wrong since a
water body that receives water from land drainage cannot be closed at the upstream end. It is
open-ended on both sides. In fact, alluvial estuaries — the topic of this book — have very special
characteristics purely stemming from the fact that they have an open, and very dynamic, fluvial
boundary at the upstream end.

What is special about alluvial estuaries and what makes them different from non-alluvial and
man-made estuaries? This chapter presents a classification of estuaries and related types of salt
intrusion. It then describes the characteristics, peculiarities and resulting behaviour of alluvial
estuaries.

The shape of an alluvial estuary is similar all over the world. The width reduces in upstream
direction as an exponential function. In coastal plain estuaries there is no significant bottom
slope, but in estuaries with strong relief, the depth may decrease exponentially. As a result, in
both types of alluvial estuaries, the cross-sectional area varies exponentially, and so does the
flood volume, also called “tidal prism” (the volume of water that enters the estuary on the tide).
Morphological equilibrium and entropy considerations (such as minimum stream power) are the
cause of this typical shape. There is a similarity between the exponential reduction of the width
of an estuary (in the upstream direction) and the exponential increase of the drainage area of a
catchment (in the downstream direction) described in Rodriguez-Iturbe and Rinaldo (2001).

The constant depth and exponentially varying width correspond with the shape of an “ideal
estuary” as described by Pillsbury (1939) and Langbein (1963), a topography that can be ob-
served in coastal plain estuaries all over the world. The shape of an alluvial estuary is char-
acterised by the ratio of the depth of flow (h) to the convergence length (b), the length scale
of the exponential function. Although there is empirical evidence (examples of a wide range of
estuaries will be provided) and mathematical proof of this fact, acceptance of this phenomenon
is still low among scientists used to working with a different schematization of topography (most
authors assume a bottom slope and many use a constant width). In 1.2, a classification of estu-
aries is presented that takes into account tidal range, river flow, type of salt intrusion, estuary
topography and relief.

The topography is key to estuary processes. The fact that water flows as it does is strongly
influenced by the medium through which it flows. In principle, the non-linear hydraulic equations
(the St. Venant equations) can demonstrate irregular and unpredictable behaviour, but in alluvial
estuaries we seldom observe this. Instead we observe a number of surprisingly simple “laws”:

1



2 SALINITY AND TIDES IN ALLUVIAL ESTUARIES

1 . The tidal excursion (the distance a water particle travels during a tidal cycle) is near constant
along a coastal plain estuary. This is related to the morphological equilibrium (Savenije,
1989).

2 . There are simple analytical relations for estuary topography (h/b), wave celerity (c¢) and
phase lag () between high water and the subsequent moment of slack water that can be
derived from the equation for conservation of mass (Savenije, 1992b, 1993b).

3 . We also see that tidal amplification of the tidal wave follows a simple linear function, whereas
tidal damping is partly linear and partly exponential, based on the equation for conservation
of momentum (Savenije, 1998, 2001b; Horrevoets et al., 2004). Although this equation is
more complex than “Green’s Law”, it is still surprisingly simple.

4 . We see that in coastal plain estuaries of ‘infinite’ length, the estuary depth tends asymptot-
ically to the ‘ideal’ depth: the depth of an ideal estuary, where no amplification or damping
occurs (Cai et al., 2012b).

5 . The propagation of the tidal flood wave is influenced by tidal damping (and vice versa). This
interaction can also be described by a simple analytical equation (Savenije and Veling, 2005).

6 . The set of relatively simple analytical equations can be solved explicitly without the need for
a numerical model (Savenije et al., 2008).

7 . We observe that salt intrusion is well mixed or partially mixed at the time when it matters.
In tidal estuaries, the salt wedge, which most people think is the dominant salt intrusion
mechanism, either does not occur at all, or only occurs during high river floods, when people
are (rightly) more worried about flood protection (Savenije, 1992a).

8 . Mixing of salt and fresh water, although a complex process that results from many different
mixing mechanisms, can be described by a surprisingly simple formula, originally coined by
Van der Burgh (1972).

9 . Salt intrusion can be described by an analytical equation that can be applied to new situations
with a minimum of calibration. In fact, the equation is predictable in that it can be applied
outside the range of calibration; e.g. to analyse the effect of river discharge, interventions in
the estuary by dredging, sea level rise, etc. (Savenije, 1993a,c).

These phenomena are briefly introduced in this chapter, and more fully described and derived
from the basic equations in subsequent chapters.

1.2 Importance of estuaries to mankind

An estuary is the transition between two distinct water bodies: a river and a sea. One of the
few things that a river and a sea have in common is that they contain water, and therefore
provide an aquatic environment. There are, however, many differences: a river transports and
does not retain water, whereas a sea primarily stores water; river water is fresh, whereas sea
water is saline; a river has more or less parallel banks and a bottom slope in the direction of
flow, whereas a sea is virtually unlimited and has no bottom slope in the direction of flow; in
a sea the tidal waves - perpendicular to the coast - are primarily standing waves, whereas in a
river the flood waves are primarily progressive (for definitions, see Chapter 2). This list is not
exhaustive.

An estuary, on the other hand, has characteristics of both a river and a sea (see Table 1.1).
Typical riverine characteristics of an estuary are that it has banks, flowing water, sediment trans-
port, occasional floods, and - in the upper parts - fresh water. Its typical marine characteristics
are the presence of tides and saline water. But the most typical feature of an estuary is that
it is the transition between a river and a sea, with its own hydraulic, morphologic and biologic
characteristics such as: tidal waves of a mixed type, a funnel shape, and a brackish environment,
quite different from other water bodies. Rivers carry nutrients to the nutrient poor oceanic en-
vironment. The estuary is the region where these two environments interact, serving as a crucial

Hubert H. G. Savenije



Chapter 1: IMPORTANCE OF ESTUARIES TO MANKIND 3

feeding and breeding ground for many life forms. Because of these typical characteristics and the
related unique habitats, the estuarine environment plays an important role in the life cycle of
numerous species. The flora and fauna of estuaries are extremely rich and the area of influence
through the migration of species is large. The importance of estuaries to the global environment
is not easily overestimated.

Table 1.1: Characteristics of an estuary compared to a river and a sea.

Sea Estuary River
Shape Basin Funnel Prismatic
Main hydraulic | Storage Storage and Transport of water
function transport and sediments
Flow direction | No dominant  Dual direction Single downstream
direction direction
Bottom slope No slope No slope Downward slope
Salinity Salt Brackish Fresh
Wave type Standing Mixed Progressive
Ecosystem Nutrient poor, High biomass Nutrient rich,
marine productivity, high riverine
biodiversity

To people estuaries have always been important, both as a source of food and as a transport
link between river and sea. In addition, lands bordering estuaries generally have excellent po-
tential for agriculture: soils are fertile, the land is flat, and fresh water is, in principle, available.
That’s why most densely populated areas of the world are situated in coastal areas near estuar-
ies. However, estuaries are also fragile. An estuary is a sediment sink, accumulating sediments
stemming both from the river and the sea. As a result, the residence time of pollutants, attached
to the sediments, is high. Given the high value of the estuarine ecosystem, the intense human
use of the coastal zone and the high susceptibility to pollution, it is imperative that estuarine
environments are protected. However, in some areas, human development has interfered with
the water resource system, leading to serious deterioration of invaluable ecosystems. As con-
cern grows about these developments, management for the sustainable use of the estuary water
resources is receiving increasing attention.

This book aims to supply insight into the dominant hydraulic and hydrologic processes that
determine the estuarine environment, and in doing so provide a tool for improving the sustainable
management of the water resources of estuaries. Using the formulas derived, one can determine
and predict the impact that interventions in the estuary system (such as dredging or fresh water
withdrawal) have on the tidal range, the tidal propagation, the mixing processes and the salt
intrusion (e.g. Cai et al., 2012a). The formulas can be used to determine the amount of fresh water
that needs to be released to counterbalance saltwater intrusion and to compute the longitudinal
distribution of the salinity as a function of geometric, hydraulic and hydrological parameters
(e.g. Zhang et al., 2011; Nguyen et al., 2008a).

Knowledge of the physical phenomena that determine the process of tidal flow, tidal mixing
and salt intrusion are important as they influence the environment of an estuary and its water
resources potential in many ways. Interventions in the estuary topography can have drastic
impacts on the hydraulic behaviour of an estuary, which may cause dramatic, and often irre-
versible, ecological change. Upstream developments, such as river regulation by dams and fresh
water withdrawal, have a direct impact on the salinity distribution in the estuary, sometimes
leading to hypersalinity (Savenije and Pagés, 1992). Changes in the salinity distribution impact
on water quality, water utilisation and agricultural development in the coastal area, and the
aquatic environment in general.

The importance of estuaries to mankind cannot be easily overstated. We are witnessing
a period of rapid development and change, at a pace unprecedented in history. Our thirst
for further development lies at the heart of most of our environmental problems. The global
processes of development have unleashed forces that are difficult to contain. At the same time,
our knowledge of natural systems is growing fast and the technology at our disposal and the
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related computational capacity is increasing by the day. This book aims to contribute to the
sustainable development of coastal zones by enhancing our insight and understanding of the
processes at play in the estuarine environment, in the hope that the next generation of scientists,
engineers and water managers will find the inspiration and the means to use the estuary resources
wisely and conserve what is most fragile and valuable.

1.3 Classification of estuaries

In understanding how an estuary is classified, it is important to define the main drivers that
affect its character. These are:

e The tide, which is generated by interactions in the planetary system, particularly between
the Earth, the sun and the moon. It acts as a periodic function consisting of multiple
components, depending on the frequencies of the Earth’s rotation, the orbits of the Earth
and the moon and other planetary processes at longer time scales. The dominant periods
are in the order of 12.3 (semi-diurnal) and 24 (diurnal) hours. The tide is the main supplier
of energy and salt water to the estuary system. The tide is responsible for the harmonic
pumping of water into and out of the estuary with an erosive power that is neutralised only
if the banks converge at an exponential rate.

e The (flood) discharge of the river, which provides fresh water and sediments to the
estuary system. During a flood, river sediments settle as soon the fresh water enters the
estuary, the banks begin to widen, the cross-section increases and, therefore, the velocity
of the fresh water reduces. These sediments can only be transported downstream by the
residual downstream energy of the flow, which is a combination of the harmonic tidal flow
and the downward river flow. If the banks are parallel, the downstream transport process
is faster. This is why estuaries with a high flood discharge tend to have modest bank
convergence (near parallel banks).

e The waves, which have a stochastic nature, depending on meteorological conditions.
Waves can have a dominant influence on the formation of the estuary mouth. The amount
of energy supplied by waves, particularly during extreme events, can be substantial. How-
ever, in contrast to tidal energy, which dissipates along the entire estuary axis, wave energy
dissipation is concentrated near the mouth of the estuary.

e Lateral (littoral) sediment transport along the coast can be responsible for the for-
mation of spits and bars. If the littoral transport is strong in relation to the erosive power
of the tide and of the river discharge, then this can lead to estuaries that are (temporarily)
closed off from the sea by an ephemeral bar. Such an estuary is called a “blind” estuary.

e The density difference, which is responsible for a residual inward current along the
bottom, transporting marine sediments into the estuary. In general, the fine sediments
transported by the river as ‘wash load’ deposit once they come into contact with saline
water, through a mechanism called flocculation. Together with the upstream transport
of marine sediments, this leads to turbidity peaks and mud or sand bar formation at the
upstream limit of the salt intrusion.

e The climate, which determines the rate of evaporation, the rainfall on the estuary, the
hydrological regime of the streams feeding the estuary, the temperature of the water and the
radiation on which the aquatic ecosystem thrives. It also determines whether mangroves
and sea grass can grow, which are important agents in the stability of the banks and mud
flats.

Of these drivers, tide and river floods are the two most important in determining estuary shape.
However, it is the combination of all these drivers that leads to the wide range of estuary shapes
and behaviours, each with a different aquatic environment. Several ways to classify estuaries are
described below, according to: a) shape, b) tidal influence, c) river influence, d) geology and e)
salinity.
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a) Classification by shape.
In estuaries, the following characteristic shapes can be distinguished:

e Prismatic: The banks of the estuary are parallel. This is a type of estuary that only
exists in a man-made environment where the banks are artificially fixed. Examples are
shipping channels that are regularly dredged and where the banks are stabilised. In an
estuary where the flood volume reduces in the upstream direction, and consequently the
flow velocity amplitude reduces as well, no morphological stability is possible. A constant
cross-section can only be maintained through dredging, such as in the Rotterdam Waterway.

e Delta: A near prismatic estuary where the tidal influence is small compared to the amount
of river water feeding the delta. Deltas occur in seas with a relatively small tidal range and
on rivers with a high sediment load (e.g. the Mississippi, the Nile, the Mekong).

e Funnel or trumpet shape: The banks converge in the upstream direction. This is the
natural shape of an alluvial estuary, where the tidal energy is equally spread along the
estuary axis (e.g. the Maputo, the Pungue, the Schelde).

¢ Rias, fjords and sounds: Fjords are the result of glaciers that eroded the underlying
rock, after which the valley was submerged by sea level rise. In North America and New
Zealand, these fjords are also called sounds. Drowned river valleys (also called by the
Portuguese name ‘ria’) stem from the irregular topography of a watershed drowned by sea
level rise, where the feeding rivers carry too little sediment to keep up with the seas level
rise. This type of estuary generally has irregular banks with several side channels and
embayments.

e Bays: These are semi-enclosed bodies that do not have a significant input from a river.
The distinction between a bay and a drowned valley is often not easy to make.

A good description of several of these estuaries is provided by (Dyer, 1997, pp.7-12).

b) Classification by tidal influence.

The most general classification used is by Davies (1964), who distinguishes micro-, meso-, macro-
and hyper-tidal estuaries on the basis of their tidal range (see section 2.1.1). This assumes that
tidal range is a good indicator for the amount of tidal energy dissipated in the estuary, which
is responsible for the erosive power of the tide and hence the shape of the estuary. Nichols and
Biggs (1985) introduced the term of a ‘synchronous estuary’ where the amount of tidal energy
per unit width is constant along the estuary axis, and the tidal amplitude is constant. However,
this term is erroneous since ‘synchronicity’ suggests that water levels in the estuary are reached
at the same time (which happened in estuaries experiencing a standing wave), but that is not
what the authors meant. We call such an estuary an ‘ideal estuary’, following the definition by
Langbein (1963). An ideal estuary is one of three types of tidal classification used in this book:

e Ideal estuary: An estuary where, as the tidal wave travels upstream, the amount of en-
ergy per unit width lost by friction is exactly equal to the amount of energy gained by
convergence of the banks. In an ideal estuary the tidal range is constant along the estuary
axis.

e Amplified estuary: An estuary where the tidal range increases in upstream direction
because convergence is stronger than friction. Clearly this process cannot continue in-
definitely, implying that at some point along the estuary the friction should become more
pronounced, leading to a reduction of tidal amplification and subsequently to tidal damping.
The process of damping is enhanced by the river discharge, which increases the friction.

e Damped estuary: An estuary where friction outweighs bank convergence. Tidal damping
occurs in estuaries with a small convergence length or in drowned river values with a narrow
opening.
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6 SALINITY AND TIDES IN ALLUVIAL ESTUARIES

c¢) Classification by river influence
If we classify by river influence, we can distinguish two extreme cases, the riverine and the marine
estuary:

e Riverine estuary: This estuary is dominated by the river flow, both its discharge and
sediment supply. The water is fresh and it behaves like a river: parallel banks, regular
bank overtopping if not protected by dikes, a sandy bottom and sandy banks. The tide
propagates as a progressive wave.

e Marine estuary: This estuary is dominated by the sea. The water is completely saline.
There is no significant fresh water and sediment input from the landward side. The banks
are often muddy. The ecosystem is primarily marine. The tide propagates as a standing
wave.

There is obviously a clear link between this classification and the classification by shape (a).
Riverine estuaries are prismatic or delta estuaries, whereas marine estuaries are bays.

d) Classification by geology

An estuary has been shaped within a geological setting, which reflects its geological history.
Since an estuary is a transition from a river to the sea, the geology is at least partially alluvial.
Depending on the degree to which an estuary is alluvial or not, we distinguish three types:

e Fixed bed estuary: An estuary with a fixed bed is a remnant of a different geological era.
Alluvial estuaries are very young in geological terms, whereas fixed bed estuaries stem from
an older geological period. Fjords are the remnants of glaciers that were active during the
ice ages, and rias are remnants of drowned river basins where the river does not generate
sufficient water and sediment to keep up with the rate of sea level rise.

e ‘Short’ alluvial estuary: An estuary that is generally situated in a submerged valley (ria)
or fjord. These estuaries are alluvial in the sense that the water flows in its own sediments,
but they have not yet reached a stage of morphological equilibrium. The geological forma-
tion process (e.g. sea level rise or tectonic dip) is too fast, or the supply of sediments is
too small, for the sedimentation to keep up. These estuaries have not been able to develop
an equilibrium length, often because they are too short and the topography is too steep,
resulting in standing waves. An example is the Ord River described by Wright et al. (1973).
Van der Wegen et al. (2008) used a 3-D morphological model to generate the natural shape
of an alluvial estuary, without imposing a river discharge. It led to a short coastal plain
estuary with an exponentially varying cross-section and an almost linear bottom slope.
The length of these estuaries is typically a quarter of the tidal wave length.

e ‘Long’ alluvial or coastal plain estuary: A fully alluvial estuary consisting of sediments
that have been deposited by the two water bodies that feed it: the river and the sea.
Within these sediments, the estuary has shaped its own bed in a way that spreads the
energy available for erosion and deposition equally along its length, resulting in minimum
stream power. The coastal plain is long enough for the alluvial estuary to develop fully. It
has an exponentially varying cross-section and almost no bottom slope.

e) Classification by salinity

We can also classify the estuary according to its salinity profile. Because the salinity profile
depends on the estuary’s shape and is the result of the main drivers, we can use it to infer
information on estuary geometry and dominant drivers.

e Positive or normal estuaries: These are estuaries where the salinity decreases gradually
in the upstream direction, from sea salinity to river water salinity. These estuaries are the
dominant type in temperate and wet tropical climates. Because there is a significant river
input, these estuaries are generally alluvial. In Section 1.4.4 we further divide this type
of estuary into three sub-types - the recession shape, the bell shape and the dome shape -
each the result of the estuary’s geometry.

Hubert H. G. Savenije



Chapter 1: CLASSIFICATION BY ESTUARY NUMBERS 7

e Negative or hypersaline estuaries: These estuaries have a salinity that increases up-
stream because they are shallow, evaporation exceeds rainfall and the amount of fresh
water input from the river is too small to compensate for the difference. These estuaries
occur in arid and semi-arid climates and are characterised by the occurrence of salt flats
(salinas). Because of the low fresh water discharge, and subsequently the low sediment in-
put, these estuaries are often not fully alluvial; they are more commonly rias. Hypersaline
estuaries have a very peculiar ecosystem often dominated by pink algae. Ample attention
is given to these estuaries in Chapter 4.

1.4 Classification by estuary numbers

In Section 1.3, the two dominant drivers of estuary shape are the tide and the river discharge.
The simplest dimensionless number that characterises this ratio is the Estuary number N, which
in the Dutch literature is called the Canter-Cremers ! number, equal to the ratio between the
amount of fresh and saline water entering the estuary during a tidal period. The first volume is
the product of the fresh water discharge @y and the tidal period 7', the latter is the flood volume
P,, also called the tidal prism:
_ QT

N = 2 (1.1)
Another important estuary number is the Estuarine Richardson? number, which is defined as
the ratio of potential energy provided to the estuary by the river discharge through buoyancy of
fresh water and the kinetic energy provided by the tide during a tidal period:

N, — Bpgh QT
R p v P,

This estuary number accounts for more driving factors than the Canter-Cremers number. It
incorporates the effect of the relative density difference between fresh water and sea water and
of the Froude® number, which is the ratio between the amplitude of the tidal velocity v and the
celerity of a frictionless finite amplitude wave (co = v/gh):

(1.2)

F=Y (1.3)
co
If the Estuarine Richardson number is high, there is enough energy available in the river discharge
to maintain a sharp interface and subsequently stratification occurs; if it is low, there is enough
energy available in the tidal currents to mix the river water with saline water and the estuary is
well mixed. These estuary numbers, which are key in the classification of estuaries, are derived
and presented in more detail in Chapter 2.

In Table 1.2, a combined overview of the different estuary types is presented, together with
their main characteristics related to tide, river influence, geology, salinity and estuary number.
Table 1.2 shows that the tidal wave type and the type of the salinity intrusion are very different in
these estuaries. Some of the characteristics are not always obvious. For instance, in fjords, which
generally do not drain large catchments (otherwise they would already have become alluvial) and
hence do not have a very high river discharge, stratification generally does occur. This is because
they generally are very deep and, as a result, have a relatively low tidal velocity amplitude

1J.J. Canter-Cremers (1879-1925) was a Dutch hydraulic engineer working for the Ministry of Public Works
on the propagation of storm surges and tides in river branches. He laid the foundation for Dutch research on tidal
propagation in estuaries, essential for the prestigious “Delta-Works” constructed in the branches of the Rhine,
Schelde and Meuse deltas during the 20th century.

2Lewis Fry Richardson (1881-1953) was a British scientist with a very broad background, holding degrees
in physics, mathematics, chemistry, biology and psychology. His field of work was equally broad. His earliest
publications are on meteorology, while his latest work is on the psychology of war and peace. In hydraulic
engineering he is known for his theory on fluid convective stability, leading to the Richardson number, and for his
law on turbulent diffusion.

3William Froude (1810-1879) was a British engineer who established the important scaling law for scale models,
which he developed for testing scale models of ship hulls. The Froude number is an essential scaling law in physical
model tests.
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8 SALINITY AND TIDES IN ALLUVIAL ESTUARIES

(and tidal excursion), leading to a high Estuarine Richardson number. In prismatic channels,
stratification can also occur if there is sufficient river discharge.

Table 1.2: Estuary classification in relation to the aspects: tide, river influence, geology, salinity
and estuary number.

Estuarine
Tidal River Richardson
Shape wave type influence Geology  Salinity number
Bay Standing wave No river - Sea salinity Zero
discharge
Ria Mixed wave Small river Drowned High salinity, Small
discharge drainage often
system hypersaline
Fjord Mixed wave Modest Drowned Partially High
river glacier mixed to
discharge valley stratified
Funnel Mixed wave; Seasonal Alluvial Well mixed Low
large tidal discharge in coastal
range plain
Delta Mixed wave; Seasonal Alluvial Partially Medium
small tidal discharge in coastal  mixed
range plain
Infinite Progressive Seasonal Man-made Partially High
prismatic wave discharge mixed to
channel stratified

1.5 Alluvial estuaries and their characteristics

Alluvial estuaries are estuaries that have movable beds, consisting of sediments of both riverine
and marine origin, in which there is a measurable influence of fresh water inflow. The water
moving in the estuary can either erode the estuary bed (by deepening or widening) or it can
deposit sediments and, in doing so, make the estuary narrower or shallower. Hence, the shape of
an alluvial estuary is directly related to the hydraulics of the estuary, or as Wright et al. (1973)
put it: “the simultaneous co-adjustment of both process and form has yielded an equilibrium
situation”. This equilibrium is a dynamic equilibrium between deposition and erosion, where
at some point in time erosion is dominant, and at another point in time deposition dominates.
This happens at different time scales: the short intra-tidal time scale where the tidal velocity
accelerates and decelerates within the tidal period; at the inter-tidal time scale, between spring
and neap tide, as a result of the difference in the available tidal energy; and at a seasonal or annual
time scale, as a result of river discharge variation. The residual current that results from the
river discharge gradually, and slowly, transports sediments downstream. However, during floods,
it deposits sediments because the transport capacity of flow reduces as the estuary widens and
the flow decelerates.

So, in an alluvial estuary, water movement depends on the topography, and the topography
in turn depends on the erosive power of the hydraulics. The interdependence between hydraulics
and topography is important because it permits us to derive hydraulic information from the
estuary shape, and to derive geometric information from the hydraulics. This is probably why
predictive equations, such as those presented in Section 2.1.2, appear to work (e.g. Gisen et al.,
20xx).

Pethick (1984), elaborating on the differences between alluvial estuaries and rivers, stated
that: “in its simplest form” the major difference is “that the tidal flow of the estuary, unlike the
flow of a river is not going anywhere”. In a river water flows because upstream rainfall generated
a discharge that seeks a way downstream, while the water in an estuary flows just because the

Hubert H. G. Savenije



Chapter 1: ALLUVIAL ESTUARIES AND THEIR CHARACTERISTICS 9

estuary is there. For estuary water to flow, it requires an opening in the coastline, with a storage
area behind it. Its flow is entirely governed by the shape of the estuary. A further difference
between alluvial estuaries and rivers is that the amount of flow entering and leaving the estuary
depends on the channel size, while in a river the discharge does not depend on the channel size;
rather it depends on the rainfall that has fallen in the upstream catchment.

In an estuary with fixed beds (e.g. fjords), the estuary shape is not affected by the flow
(although the flow is affected by the shape). In such estuaries no sediment is supplied from a
feeding river and, if there is no continental shelf, there is also no supply of sediment from the
sea. In estuaries with fixed beds, there is no interdependence between hydraulics and shape and
it is therefore not possible to derive universal relations between shape and hydraulics in these
estuaries (see Table 1.3).

Table 1.3: Interaction between shape and flow in estuaries and rivers.

Shape determines Shape does not

discharge determine discharge
Discharge Alluvial estuaries Alluvial rivers
determines shape
Discharge Fjords and Rias Canals and
does not non-alluvial rivers

determine shape

1.5.1 The shape of alluvial estuaries

Alluvial estuaries have converging banks that can be described by an exponential function. The
equations describing estuary shape and hydraulics are presented in Chapter 2. This section
discusses the shape in more general terms. Figure 1.1 shows a top view of a typical estuary. The
origin of the longitudinal axis of the estuary is located at the mouth, which is the point where
the estuary meets the ocean. The exact position of this point is often difficult to determine, but
it can generally be found by connecting the adjacent shorelines by a fluid line. A good rule of
thumb is to identify the point where the primarily one-dimensional flow pattern of the estuary
changes into two-dimensional flow, or the point where the ebb and flood currents that fill and
empty the estuary are fanning-out into the ocean.

Figure 1.1 shows two important horizontal length scales of the estuary: the width B, which
is a function of z; and the tidal excursion F, which in alluvial estuaries appears to be near
constant. The tidal excursion is the distance that a water particle travels on the tide. It moves
inland during the flood tide and moves out again during ebb. The tidal excursion is in fact
the horizontal tidal range, which is the integral over time of the tidal velocity between the two
moments of slack: low water slack (LWS) and high water slack (HWS). The typical length of
the tidal excursion for a diurnal tide is 10 km. In the widest part of the estuary the ratio of
E/B can be small, particularly in strongly funnel-shaped estuaries, but in the upper part of the
estuary this ratio is generally large.

Figure 1.2 shows a longitudinal cross-cut of the estuary. What strikes us is that the estuary
bottom is horizontal. It is in agreement with Pethick (1984) observation that the tidal flow is
not going anywhere. It is logical that, where there is no resultant direction of flow, there also is
no resultant bottom slope. In reality, the depth of the estuary fluctuates as the flow meanders
through the channel, deep in the bends and shallow in the crossings, but on average, in ‘long’
alluvial estuaries, there is no bottom slope, contrary to what most people believe. The bottom
slope only begins where the estuary gradually changes into the river and the river discharge Q
becomes dominant over the tidal currents. In ‘short’ estuaries, however, where the relief is steep,
there is a clear bottom gradient, which is generally linear. This phenomenon is discussed further
in Section 2.2.

The longitudinal cross-section also shows two important vertical length scales. The (vertical)
tidal range H and the depth of flow h. The ratio of tidal range to depth is an important tidal
characteristic. If this ratio is small, then the non-linear hydraulic equations may be linearised
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Figure 1.1: Definition sketch of an estuary: view from the top.

VERTICAL TIDE

Figure 1.2: Definition sketch of an estuary: longitudinal cross section.
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and relatively simple solutions of the hydraulic equations are possible. If this ratio is large,
however, second order effects in the non-linear hydraulic equations become dominant and simple
solutions are no longer possible.

Figure 1.2 shows two envelopes: one for high water (HW) and one for low water (LW). At
all times, the water levels in the estuary remain between these envelopes. The mean water level
(TA) is essentially horizontal' and links up with the backwater curve of the river. We see that
also the two envelopes converge to the water level of the river, which is sloped. In the river, the
water level slope is the same for high and low flows, but during floods the river influence reaches
further. Being a schematic picture, these processes are somewhat exaggerated.

1.5.2 Dominant mixing processes

There are two main drivers for mixing in estuaries: the potential energy resulting from the density
difference between the fresh and salt water; and the kinetic and potential energy provided by
the tide. The tide drives the tidal currents and the density difference causes an imbalance in
hydrostatic pressure that drives gravitational circulation, which is further discussed in Section
2.1.4. These two drivers generate four mixing mechanisms:

1. Turbulent mixing, or shear mixing: In a river cross-section there is a balance between
the driving forces (essentially components of the gravity force), friction and acceleration
(Newton’s 2"¢ law, see Section 2.1.1). Although gravity and acceleration work on all water
particles, friction only works along the bottom and banks of the estuary. The friction force is
transported to all other particles through a shear stress that is transferred by turbulence. As
a result the flow velocity in a cross-section is generally highest at the largest distance from
the bottom and the banks. The turbulence that is associated with this shear stress causes
mixing of water, much as in a regular river. Turbulent mixing has been intensively studied
and described by hydraulic engineers. It is reasonably well understood, but this knowledge is
of much less importance in estuaries. The other three mechanisms described below are much
more efficient in mixing salt and fresh water.

2 . Gravitational mixing: Gravitational mixing stems from the fact that the hydrostatic
pressure on the sea-side and on the river-side do not make equilibrium. Because sea water
is denser than river water, the pressure on the ocean-side would be higher at equal depth
than on the river-side. To compensate for the density difference, the water level at the limit
of the salt intrusion is set up slightly above sea level (about 10 cm if the estuary is 8 m
deep). Although on average the hydrostatic forces cancel out, the pressures are not equal
over the depth. Near the surface the resultant pressure is directed towards the sea, while near
the bottom it is directed upstream. As a result there is a residual circulation that carries
relatively saline water upstream along the bottom and relatively fresh water downstream
along the surface. The vertical salinity gradient that stems from this is an important cause
of saline and fresh water mixing, particularly in the part of the estuary where the salinity
gradient is steep. Besides vertical gravitational circulation, there is also lateral circulation
as a result of the lateral differences in salinity over the cross-section. This phenomenon has
also been amply studied, both in laboratories and in the field, and analytical equations have
been derived to describe this mixing process. For more details on gravitational circulation,
see Section 2.1.4.

3 . ‘Trapping’: Tidal trapping arises from the irregularity of the banks of an estuary. If there
are tidal inlets, or tidal flats, then the water that fills these water bodies on the incoming
tide is generally released with different density. There is a phase lag between the filling and
emptying of tidal flats and the flow in the main channel, which results in density differences.
In irregular channels, tidal trapping can be an important mixing mechanism, particularly in
large estuaries with tidal flats. The tidal excursion is the dominant mixing length scale of
tidal trapping, since this is the maximum distance over which a water particle can travel.
The larger the salinity gradient is, the more important is this mixing mechanism.

1The mean water level is not exactly horizontal. There is a residual slope caused by the density gradient, the
river discharge and the non-linearity of the momentum balance equation. For details see Chapters 2 and 3.
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4 . ‘Tidal pumping’ or mixing by residual currents: This mechanism is the least studied,
yet it is very important (as was also observed by Fischer et al. (1979)). It is the dominant
mechanism particularly near the mouth of a wide estuary. The most important difference from
gravitational circulation and trapping is that tidal pumping does not depend on the salinity
gradient; rather, it is proportional to the estuary’s width. Few researchers have dedicated
analytical effort to this mixing mechanism; instead their efforts have been concentrated on
the middle reach of an estuary where gravitational circulation is dominant. Section 4.4 gives
special attention to this type of mixing.

These mixing mechanisms are dealt with in detail in Chapter 4, and a predictive theory is
presented that allows them to be integrated into one analytical equation: the modified Van der
Burgh equation, developed by Savenije (1992b) after Van der Burgh (1972).

1.5.3 How the tide propagates

In an alluvial estuary, the tide propagates as a wave of a mixed character that has elements of
both a standing and a progressive wave. A progressive wave is much like the wave that the bow
of a boat generates, or that we feel when swimming in the surf. At the maximum elevation,
the water moves into the direction of the wave; at the lowest elevation the velocity is backward,
opposite to the direction of the wave; at the average water level, the movement is vertical. The
highest flow velocity occurs at maximum elevation. In a progressive wave, the phase lag between
the water elevation and the velocity is zero.

Flood waves in rivers are also progressive waves. At maximum elevation, the discharge is
also at its maximum; at lowest elevation the discharge is at its minimum. Purely progressive
waves occur in frictionless channels of infinite length and with a constant cross-section. For a
progressive wave to occur in a channel, the channel should have a constant cross-section and be
very long.

A standing wave is different. A standing wave is like a wave we can create in a tub by rocking
it. After we have rocked the tub, the water in the tub continues to rock back and forth. In the
tub, the maximum and minimum water levels are reached all at the same time. The water just
swings back and forth like a swing. At the extremes the velocity is zero and changes direction.
Here we see a phase lag between elevation and velocity of 7/2. Standing waves occur in harbours,
bays and, in general, in semi-enclosed basins that are connected to the sea.

Alluvial estuaries are none of the above. In alluvial estuaries, waves are of a mixed type:
a mixture between a progressive and a standing wave with a phase lag between zero and /2.
The value of the phase lag depends on the channel geometry and the friction. In Section 2.3 an
equation for the phase lag is derived.

If we make a longitudinal cross-section along the estuary we can draw the envelopes of HW
and LW, as in Figure 1.2. If we could observe the instantaneous water levels in the estuary, then
we would obtain an instantaneous tidal wave as shown schematically in Figure 1.3. This wave is
contained between the envelopes. A full tidal wave seldom fits within the length of an estuary
(except in very long estuaries, such as the Gambia), and the slope of the river is somewhat
exaggerated. In Figure 1.4, some more instantaneous tidal waves are drawn between the HW
and LW envelopes. The figure suggests that the tidal range is constant as we move upstream.
While this happens in an ‘ideal’ estuary, it is not always the case in other estuary types. Some
estuaries have a tidal wave that is damped, while others experience tidal amplification. In the
latter case, the tidal range is only damped as the river influence becomes dominant over the tide
(e.g. in the Schelde Estuary).

As the river discharge gains influence, the flow velocities are modified. Without river dis-
charge, the moment of high water slack (HWS) occurs some time after high water (HW), whereby
the incoming current stops, changes direction and subsequently starts to ebb. The reverse hap-
pens some time after low water (LW). At low water slack (LWS) the ebb current halts, changes
direction and the flood flow starts. If there is substantial river discharge, then the moments of
slack are shifted: the occurrence of LWS is delayed and HWS occurs earlier. Figure 1.5 provides
a schematic illustration of this. We see that there is superposition of the river discharge over the
tidal flows and, as a result of the river discharge, the ebb current becomes larger and the flood
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Figure 1.3: Longitudinal cross section showing an instantaneous tidal wave.

river

Figure 1.4: Instantaneous water levels contained between envelopes of HW and LW.

current is reduced (the top graph), until the point where there is only one moment of slack and
no longer a change of flow direction (the middle graph). Further upstream (the lower graph)
there is still a tidal wave, but the flow is perminently downstream.

We can calculate the fresh flow velocity Qy/A that identifies the point where there is only
one slack. We should realise that the fresh water discharge can be considered constant along the
estuary axis, but that the cross-sectional area varies, increasing towards the estuary mouth. So
the fresh water velocity increases in upstream direction.

Let the tidal velocity be given by a pure sinus:

V =vsinwt (1.4)

and let Ae (expressed in radians) be the change in the moment of slack (earlier for HWS and
later for LWS) as a result of the river discharge. We then define the dimensionless river discharge
as:

_Qr
It can then easily be seen from Figure 1.5 that:
Ae = arcsin (1.6)

and that the point where only one slack occurs corresponds with the location where the cross-
sectional area is such that: ¢ = 1. This point is indicated by a P in Figure 1.6

In Figure 1.6 we also see the envelopes of the water levels at HWS and LWS. The difference
between these two envelopes is indicated by H’, the slack tidal range. The figure also shows the
point P, where the two slacks coincide - upstream from P the flow no longer changes direction.
The dashed part between the envelopes for HWS and LWS is equal to the tidal prism P;, as we
shall see in Section 2.3.2.
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Q/A

Vebb

Figure 1.5: The influence of river discharge. On the vertical axis is the flow velocity of the
current, which is affected by the strength of the river flow velocity Qs/A. The velocity of the
flood flow is in the positive direction; the ebb flow is negative.
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Figure 1.6: The tidal prism contained between the envelopes of HWS and LWS.
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Figure 1.7: Longitudinal distribution of the salinity for a stratified estuary (a), a partially mixed

estuary (b), and a well-mixed estuary (c).
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16 SALINITY AND TIDES IN ALLUVIAL ESTUARIES

1.5.4 How the salt intrudes

The salt intrusion mechanism is generally divided into three types:
a) the stratified type, or the saline wedge type,

b) the partially mixed type,

c¢) the well mixed type.

Figure 1.7 illustrates the three types. A stratified estuary occurs when the fresh water
discharge in an estuary is large compared to the tidal flows (a large Canter-Cremers number
and a large Estuarine Richardson number). A well mixed estuary occurs when the fresh water
discharge is small compared to the tidal flows (a small Canter-Cremers number, and a small
Estuarine Richardson number). Figure 1.8 shows a schematic of the corresponding vertical
salinity gradients: a sudden increase of the salinity over the depth in a stratified estuary; a
smooth gradient in a partially mixed estuary; and the absence of a gradient in a well mixed
estuary.

What is seldom seen in figures of this type is the relative length of the salt intrusion. For
instance, the sketch presented in (Fischer et al., 1979, figure 7.1) gives a wrong impression: it
suggests that in stratified, partially mixed and well mixed estuaries, the intrusion length reaches
equally far and that it can occur at the same river discharge. It also suggests a bottom slope.
In contrast, Figure 1.7 clearly indicates that a saline wedge only occurs close to the mouth and
during a period of high river discharge (when the Canter- Cremers number is large). The well
mixed estuary occurs during low flow, resulting in a much deeper salt intrusion.

During the dry season, when water availability is lowest, water requirements are highest. At
these times, when the problems of maintaining an acceptable water quality are most pronounced,
the salt intrusion is generally of the mixed type. As the water consumption increases, the salt
intrusion becomes even more strongly mixed as the Canter-Cremers number reduces further. For
water managers aiming for the optimum use of available water resources, the critical case to
considered for design is therefore the well mixed type, when salt intrusion is at its maximum.
In alluvial estuaries, the saline wedge only occurs during periods of high river discharge; a time
at which we are hardly interested in salt intrusion, but rather in flood protection (in man-
made estuaries with a constant width this may be different due to the associated high Estuarine
Richardson number). The relatively high attention given to stratified salt intrusion by hydraulic
engineers, is therefore often more related to their professional interest than with a societal need.

This book is limited to estuaries of the partial to well mixed type, both with regard to the
hydraulics (Chapters 2 and 3) and the mixing (Chapter 4) or salt intrusion (Chapter 5). The
gradually varying density can be well incorporated in the analytical solutions for tidal hydraulics
and salt intrusion.

The distinction between the partially mixed and the well mixed type is arbitrary. The salt
intrusion is generally regarded as well mixed when the stratification (the difference between
the salinity at the water surface and the salinity near the bottom divided by their average) is
less than 10%. This is no objective criterion. Near the sea, there is more stratification than
further upstream. In practice, however, the arbitrary value of 10% is not so important. Until a
stratification of 20% to 30% is reached, no serious drawbacks have been encountered in applying
well mixed theory.

Figure 1.9 shows a longitudinal cross-cut over a saline wedge. It shows that the water level
increases slightly in the upstream direction due to the density gradient. As a result, there is a
resultant downstream fresh water flow in the upper layer and a resultant upstream flow in the salt
layer. We can see that there is a sharp interface, but that along the interface there is entrainment
of saline water by the fresh water that flows over it. In fact, the slope of the saline wedge is
maintained by a shear stress exercised by the fresh water discharge. This shear stress, and the
related turbulent mixing, is responsible for the downward salt transport that counterbalances
the upstream salt transport over the bottom.

Figure 1.10 shows the longitudinal distribution of the salinity along a well mixed estuary. It
shows different intrusion lines for HWS (the maximum salt intrusion), LWS (the minimum salt
intrusion), and for the tidal average (TA) situation. The horizontal distance between the HWS
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Figure 1.8: Variation of the salinity over the depth in a stratified (a), partially mixed (b), and
well-mixed estuary (c).
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Figure 1.9: A longitudinal cross section over a saline wedge.
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18 SALINITY AND TIDES IN ALLUVIAL ESTUARIES

and LWS curve is the tidal excursion. We see that the salinity moves up and down the estuary
following the water particles that travel between HWS and LWS. The horizontal translation of
the curves demonstrates a constant tidal excursion along the estuary.
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Figure 1.10: The longitudinal salinity distribution in a well-mixed estuary at high water slack
(HWS), low water slack (LWS) and tidal average (TA) condition.

Finally, Figure 1.11 shows the different shapes of well mixed salt intrusion curves that can
be distinguished:

SIS,

Figure 1.11: Different shapes of well-mixed salt intrusion curves.

1 . Recession shape, which occurs in narrow estuaries with a near-prismatic shape and a high
river discharge. This type is more common in deltas and shipping channels, but is also dom-
inant in riverine estuaries such as: the Corantijn (Suriname), the Chao Phya (Thailand), the
Limpopo (Mozambique), the Solo (Indonesia), and the Rotterdam Waterway (Netherlands).
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2 . Bell shape, which occurs in estuaries that have a trumpet shape, i.e. a long convergence
length in the upstream part, but a short convergence length near the mouth. There are
several estuaries that have a strong widening near the estuary mouth, possibly related with
littoral processes. Examples are: the Mae Klong (Thailand), the Incomati (Mozambique),
and the Maputo (Mozambique).

3 . Dome shape, which occurs in strong funnel-shaped estuaries (with a short convergence
length). Examples are: the Schelde (Netherlands), the Thames (England), the Pungue
(Mozambique), and the Delaware (United States of America).

4 . Humpback shape, which is a negative or hypersaline estuary, mentioned above. The driver
for hypersalinity is evaporation. If evaporation exceeds rainfall and fresh water inflow, and if
the estuary is shallow, it can become hypersaline. Estuaries with dome-shaped salt intrusion
are most susceptible to hypersalinity. Hypersalinity often occurs in shallow rias in semi-arid
areas, which have large water bodies compared to the amount of fresh water input. Examples
are: the Saloum (Senegal) and the Casamance (Senegal) (see section 5.7).

These shapes are very much determined by the topography of the estuary. Topography is a key
driver of both tidal hydraulics and mixing in estuaries, and as a result of salt intrusion. This
interaction of estuary processes with topography is a key feature of this book.

The different types of salt intrusion curves are discussed in more detail in Chapter 4, which
analyses the physical processes that generate these shapes.

1.6 What will follow

The following chapters deal in detail with the issues of tidal hydraulics, mixing processes and salt
intrusion in alluvial estuaries. Chapters 2 and 3 cover the theory of tidal hydraulics. Chapter
2 concentrates on the effect of estuary shape on estuary hydraulics and uses the water balance
equation to derive three analytical equations. Chapter 3 brings in the conservation of momentum
equation, and derives two more analytical equations for tidal damping and wave celerity. As a
result, a set of five new analytical equations is presented that follow from the combination of the
general hydraulic equations with the typical topography of alluvial estuaries. These are equations
for:

1) the phase lag between HW and HWS
2) the relation between estuary geometry and the tidal range

3) the ratio between the Froude number and the tidal amplitude to depth ratio, named the
“scaling equation”

4) tidal damping and amplification
5) the wave celerity.

All these equations are more general versions of the classical equations commonly used to date.
They have in common that they consider the effect of friction and channel convergence, as well
as the fact that tidal waves are neither progressive waves nor standing waves, but waves of a
mixed character with a phase lag between zero and 7/2. Subsequently we show that the set
of equations obtained can be solved explicitly and that the solution compares well with other
analytical approaches, as well as with numerical benchmark cases (see Section 3.3-3.4).

Chapter 4 provides a theory for mixing in alluvial estuaries, building on the work done to
date, and introducing a theory on one of the most important mixing mechanisms of funnel-shaped
estuaries: residual circulation by “tidal pumping”. It shows that Van der Burgh’s method is a
very convenient approach for combining into one equation the effect of the three main mixing
mechanisms: tidal pumping, trapping and gravitational circulation.

Based on the previous chapters, Chapter 5 presents a one-dimensional steady state and non-
steady state model for salt intrusion in estuaries. The resulting equations are surprisingly simple

Version 2.6



20 SALINITY AND TIDES IN ALLUVIAL ESTUARIES

and have yielded very good results in a wide range of estuaries studied worldwide. The method is
predictive in that it can be extrapolated to discharge regimes outside the range of calibration and
can be applied to new estuaries without the explicit need for further calibration. The unsteady
model allows the application to estuaries that do not reach an equilibrium situation in the dry
season, or that may become hypersaline. This makes the model a very useful tool to assess the
consequences of upstream withdrawals, and particularly to assess the risk of estuaries becoming
hypersaline.

Combined, the chapters present a complete theory of tidal hydraulics, tidal mixing and salt
intrusion to assist both researchers and water managers in studying the behaviour of alluvial
estuaries in a rapidly changing environment.
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Chapter 2

TIDE AND ESTUARY SHAPE

This chapter covers the theory of tidal hydraulics, specifically dealing with equations that describe
the relation between an estuary’s shape and its hydraulics.

As with all open channel flow, tidal hydraulics in an estuary can be described by the St.
Venant equations: a set of two non-linear partial differential equations that govern the movement
of water through a medium. What makes tidal hydraulics in alluvial estuaries special is the
medium through which the water flows. As we saw in the previous chapter, in coastal plains this
medium has a particular shape, similar to the shape of an ideal estuary. Although this knowledge
is far from new, in practice only few people make use of it-modern computational power allows us
to make 3-dimensional computations that no longer require geometric simplification. However,
merely applying computer models without using the knowledge and insight provided by analytical
equations may cause numerical blindness. Analytical solutions not only provide insight into the
processes at play, more importantly, they provide a means to verify or disprove the computer
models.

This chapter describes the hydraulic equations of alluvial estuaries where there is a close
interaction between geometry and flow, mutually influencing each other through continuous
feedback. As a result, a regular topography appears in which the hydraulics obey surprisingly
simple analytical equations. By combining the conservation of mass and momentum equations
with the topography of an alluvial estuary, a number of analytical equations are derived for:
1) tidal propagation; 2) tidal damping; 3) tidal amplification; 4) wave celerity; 5) phase lag;
and 6) the influence of river flow on tidal damping. In section 2.3, integrating the conservation
of mass equation leads to the Geometry-Tide equation (a relation between topographical and
tidal length scales) and an expression for wave celerity and phase lag (the Phase Lag equation).
Combining these two equations yields the Scaling equation. These equations are derived through
Lagrangean® analysis, which is a mathematical approach more natural to estuary hydraulics
and salt intrusion since the reference system moves with the water. This chapter deals with the
relation between hydraulic parameters and estuary shape and focuses on the conservation of mass
equation. The next chapter looks into the tidal dynamics. It builds further on the equations
we derive here and combines them with the equation of motion, providing derivations for tidal
damping (or amplification), tidal wave propagation, and their dependence on river discharge.

Although this text introduces the equations for conservation of mass and momentum sequen-
tially, we should realise that they are inseparable and can’t be considered in isolation. In the first
chapter we assumed that the Lagrangean velocity can be described by a sine function. As this
provided an implicit linear solution for the coupled set of equations, this can only be an approx-
imation given their non-linearity. In this chapter, we shall check the validity of this assumption
by confronting the analytical equations with observations in a range of real estuaries.

1Joseph-Louis Lagrange (1736-1813), a French mathematician and mathematical physicist, was one of the
greatest mathematicians of the eighteenth century. His work, Mécanique Analytique (1788), was a mathematical
masterpiece. Lagrange succeeded Euler as the director of the Berlin Academy. The term ‘Lagrangean’ means:
using a reference frame that moves with the water particle, or unit volume. Commonly it is mispelled, ending
with -ian, but this is wrong. As with Shakespeare, Boole and Europe, which also end with an ‘e’, the correct
spelling for the adjective is -ean.
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22 SALINITY AND TIDES IN ALLUVIAL ESTUARIES

2.1 Hydraulic equations

In hydraulics, waves are always the result of the combination of two hydraulic equations: the
conservation of mass and the conservation of momentum equation - the latter is introduced in
the next section. Further down, in section 2.3, we’ll derive analytical equations based on the
mass balance equation alone. While this may seem to contradict the earlier statement, that the
equations cannot be considered in isolation, it is not. In the derivations of these equations we
assume that the tide varies according to sinusoidal functions. This is an implicit solution of the
coupled set of equations. In fact, the sinusoidal function is only a correct solution if the set
of equations is linear (as we shall demonstrate in section 2.2.2). Obviously, this is not usually
the case - it is only correct if the tidal amplitude to depth ratio is very small. However, we
shall see that the use of an approximately correct sinusoidal function will allow us to explore
the behaviour of the non-linear system of equations. So we retain the non-linear terms in the
equations, but we make use of a linear solution to explore analytical solutions. The solutions
obtained in this and the following chapter are therefore quasi-linear, as opposed to derivations
where the equations have been fully linearised beforehand.

2.1.1 Basic equations

Alluvial estuaries have a dynamic equilibrium between erosion and the deposition of sediments
that are picked up, transported and deposited by water. In turn, the water movement strongly
depends on the geometry it has created. This close interaction between the dynamics of water and
sediment is an important characteristic of alluvial estuaries, as discussed in the previous chapter.
The movement of water and sediment is generally described by a set of four 1 dimensional
equations: the conservation of momentum and mass for water, the conservation of mass for
sediment and an empirical formula that relates sediment transport to flow parameters (see e.g.
Jansen et al., 1979):

5(Q2 /4) 0Zy h dp UlU]|
S +A6+A6+A e+ A gy, =0 2.1)
04 9Q _
1‘554‘% R, (2.2)
92, , 9Q.
B ot + —= oz =0 (2.3)
Q, = Bd,U" (2.4)

where:

Q = Q(z,1) is the discharge in m*/s;
o, is a shape factor (assumed constant) to account for the spatial variation of the flow
velocity over the cross-section (a5 > 1);
A = A(z,t) is the cross-sectional area of the flow in m?;
h = h(z,t) is the mean cross-sectional depth of flow in m;
Zy = Zy(z,t) is the mean cross-sectional bottom elevation in m;

— g is the acceleration due to gravity in m/s?;

— p = p(z,t) is the density of the fluid in kg/m3;

— U = U(z,t) is the mean cross-sectional flow velocity in m/s;

— C = C(z) is the coefficient of Chézy in m%*/s;

— B = B(x,t) is the stream width of the channel in m;

— Bg = Bg(z,t) is the storage width of the channel in m;

— rg = rg(z) is the cross-sectional storage ratio, or the storage width ratio (if the width is
much larger than the depth) (rs > 1);

— R, is a source term accounts for rainfall, evaporation or lateral inflow in m?2/s;
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— Qs = Q(z,t) is the sediment discharge in terms of sediment volume (including pores) in
m?/s;

— n is an exponent;

— dy = dg(z) is a parameter with the dimension m(2 ™s(® 1) that depends on sediment
characteristics and channel roughness.

Throughout this book, since the most important boundary condition lies at the estuary mouth,
the positive z-direction chosen is the upstream direction with the origin at the sea or ocean
boundary. The first two equations are generally known as the St. Venant equations (named
after A.J.C. Barré de Saint-Venant?).

The first equation, (2.1), is the equation for conservation of momentum, derived from New-
ton’s® second law of motion, which states that the acceleration of an object is equal to the
balance of forces, in this case the component of gravity in the direction of flow and friction. The
first term in (2.1) is the Eulerian® acceleration term, while the second term is the convective
acceleration term. The coefficient ag accounts for the shape of the channel. The more irregular
a cross-section and the more the variation in flow velocity over the cross-section, the larger ag
is. It is larger than unity, but generally smaller than 2. In a regularly shaped, single channel,
alluvial stream, aig is usually close to unity (Jansen et al., 1979). In estuaries where there are
no floodplains that discharge considerable parts of the flow, as is normally close to one.

The third, fourth and fifth terms jointly represent gravity, exercised through the water pres-
sure gradient. These terms are the gradient of the water depth, the bottom slope and the density
gradient. The density term is often disregarded, but it can play an important role in the brack-
ish part of an estuary. For the derivation of this term, the assumption has been made that the
density is merely a function of z and ¢ and that there is no vertical salinity gradient (i.e. the
estuary is well mixed). The fourth term will be discussed in detail in section 2.1.4.

The last term of (2.1) is the friction term, based on the formula of Chézy®. In this term,
the depth h is used instead of the hydraulic radius. This assumption is justified if the estuary
is wide in relation to its depth (B > h). In alluvial estuaries this is always the case. Since
Chézy’s coefficient is not independent of the depth, the formula of Manning® is considered more
appropriate to describe the resistance term R:

Ul _ UlU|

C?h ~ KZ2hi/3

where K is Manning’s coefficient, generally indicated by its inverse value n (K =1/n).
The second St. Venant equation, (2.2), is the conservation of mass equation, or the equation

of continuity. In this equation there is a balance between the first term, indicating the rate

of increase of the volume over time, and the second term, indicating net inflow of water over

the stretch considered. The sum of these terms should equal the source term, which accounts

for lateral input of water from drainage, rainfall or evaporation (negative). In this chapter, the

R=

(2.5)

2In 1843, seven years after the death of Claude Navier (1785-1836), the Frenchman Adhémar Jean Claude
Barré de Saint-Venant (1797-1886) rederived Navier’s equations for a viscous flow. In this paper he was the first
to properly identify the coefficient of viscosity. He further identified viscous stresses acting within the fluid as a
result of friction. George Stokes (1819-1903), like Saint-Venant, also derived the Navier-Stokes equations but he
published the results two years after Saint-Venant (after: J. J. O’Connor and E. F. Robertson).

3Isaac Newton (1643-1727) published his single greatest work, the Philosophiae Naturalis Principia Mathe-
matica, in 1686. It contains his famous laws of motion, and the law of universal gravitation.

4Leonhard Euler (1707-1783), a Swiss mathematician and student of Bernoulli, may be considered as the
founding father of modern mathematics (introducing among other things, the exponential function, complex
calculus and the notation f = f(z)). His Introducio in analysia infinitorum (1748) provided the foundations of
mathematical analysis. The term ‘Eulerian’ is used for a reference frame that is fixed on the river or estuary
bank, in contrast to a Lagrangean reference frame that moves with the water.

5In 1776 the French engineer, Antoine de Chézy (1718-1798), published his well-known formula, which he had
been using for some time, where the flow velocity is proportional to the root of the product of the hydraulic radius
and the slope.

6In 1891, Robert Manning (1816-1897), an Irish engineer, published his well-known formula, building on the
work of De Chézy (among others). Although he tried to make his coefficient dimensionless, he did not succeed.
After the introduction of /g, there still remained a length to the power 1/6 to account for. This was done in
1923 by the Swiss hydraulic engineer, Albert Strickler (1887-1963), who related the roughness to the 1/6th power
of the ratio between effective roughness depth and water depth. As a result, the Manning formula is often called
the Manning-Strickler formula.
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source term can be disregarded where it relates to tidal hydraulics, since lateral inflow generally
has a marginal influence on tidal parameters such as velocity and depth. In Chapter 4, however,
the source term can play a key role in the salt balance equation, particularly when an estuary
turns hypersaline.

In the second equation we see the appearance of the cross-sectional storage ratio. This ratio
needs to be included because the cross-sectional areas used in the two St. Venant equations are
not the same. In the equation of motion, the cross-sectional area represents the water that is in
motion (the part that flows under the influence of gravity and friction). In the second equation it
is the whole part of the water body where water is stored. This also includes stagnant water that
does not take part in the equation of motion. In order to combine these two equations we have
to use a relation between the active cross-sectional area A and the total area Ag, which is the
cross-sectional storage ratio rg. This ratio is always larger than unity, or equal to unity if there
is no dead storage. If the width is large compared to the depth, we can generally simplify this
ratio to the proportion of the total width of the channel Bg in relation to the active width of the
stream B (see below). Particularly close to the mouth of an estuary, where there are mudflats,
this ratio can be significant. It is mostly not significant in the upper part of an estuary. If an
estuary has a lot of dead-end side channels, then the ratio can be much larger. In all practical
cases rg < 1.2.

The third equation is the conservation of mass equation of the sediment (or, rather, the
conservation of volume). It represents the balance between sediment deposition over time and
the increase of sediment transported over the reach being considered. If the transport capacity
increases then erosion occurs; otherwise deposition occurs. Erosion balances deposition when the
sediment transport capacity is constant with z. The fourth equation is the sediment transport
equation. It appears in several forms in the literature. The most widespread formula, well
appreciated for its wide applicability in alluvial rivers as well as for its simplicity, is the formula
of Engelund and Hansen (1967), where the exponent n equals 5 and the parameter d; is defined
by:

0.05
D50 A%CP /g
where Dsg is the diameter of the bed material that is exceeded by 50% of the sample by weight
and Ag is the relative density of submerged sediment (generally Ag = (2600—1000)/1000 = 1.6).
In addition, the following geometric relationships define A, rg and Q@ as:

(2.6)

S

A=hB (2.7)
Q=UA (2.8)
Ts = % (29)

Finally there is an equation for the density gradient, which is not reproduced here. In Chapter
4, a relation will be presented that allows the determination of p as a function of space and time.
For the following analysis it is assumed that the water density gradient is either known through
measurements, or can be computed by an appropriate salt intrusion model. Assuming that asy,
rs, p, C, g, n, A, D5y and hence ds are known, the list of dependent variables consists of the
following seven parameters:

e The mean cross-sectional flow velocity U(z,t)
e The mean cross-sectional depth of flow h(z,t)

e The mean cross-sectional bottom elevation Z(z,t)

The channel width B(z,t)

The cross-sectional area A(z,t)

The discharge Q(z,t)

Hubert H. G. Savenije



Chapter 2: HYDRAULIC EQUATIONS 25

e The sediment discharge Q,(z,t)

We therefore have six equations ((2.1)-(2.4) and (2.7)-(2.8)), with seven dependent variables.
Consequently, one more equation is required, besides boundary conditions, to solve the set of
equations for the seven dependent variables - we need something to relate geometric parameters
to flow parameters. All conventional hydraulic models are based on the above equations, which
can only be solved if the geometry of the channel (in particular, its width) is fixed. With the
present models we are not yet able to predict what the shape of a channel will be when we
provide a certain discharge at the upstream boundary of a freely erodable slope. New research,
documented by Rodriguez-Iturbe and Rinaldo (1997), used concepts such as self-organisation,
minimum stream power and entropy to find this missing relation, but as yet the solution has not
been found.

As a result, in computational hydraulics, instead of a seventh equation the width is imposed
as a function of distance z and water level elevation (Z = Z, + h). For a freely varying width,
however, a ‘seventh equation’ is needed. Van der Wegen et al. (2008), for instance, use a wetting
function where the banks either erode or accrete depending on the local flow conditions. Such
an algorithm is a closure relation replacing the seventh equation.

2.1.2 The seventh equation

Although several efforts have been made to relate the width B to flow parameters, no unequivocal
physically-based method has yet been developed (to the disappointment of many researchers).
For alluvial channels, Lacey, in 1930, formulated a theory based on earlier work by Kennedy
(1894) and Lindley (1919), which became known as “regime” theory. It which was based on the
assumption that an alluvial channel adjusts its width, depth and slope in accordance with the
amount of water and the amount and kind of sediment supplied (Stevens and Nordin, 1987).
Lacey’s theory is almost entirely empirical and supplies simple power expressions that relate
stream depth, width, slope and velocity to the discharge. Regime theory has been relatively
successful in India and Pakistan in the design of stable irrigation channels under natural regimes.
On the other hand, regime theory has been widely criticised mainly because of its lack of physical
basis, its empirical character and the scanty and incomplete database used for its derivation
(Stevens and Nordin, 1987). Investigations by Stevens (1989) on stream width however indicated
that, although there still is no satisfactory physical backing, there is also no reason to reject the
empirical relation between stream width and discharge (see also: Rodriguez-Iturbe and Rinaldo,
1997, pp. 12-15).

Recent work by Eaton and Church (2007) and by Eaton et al. (2010) confirm that Lacey’s
equation is correct for the “downstream hydraulic geometry”. This is to distinguish it from the
geometry “at the station”, where water levels are below the spilling level, within the banks-in
this case, Manning’s equation (or the rating curve) applies. In the downstream approach we
assume ‘bankfull discharge’?, under which conditions Lacey’s formula performs remarkably well
in a wide range of natural channels.

For his stream width formula, Lacey made use of the wetted perimeter P instead of the
surface (or bottom) width B. The wetted perimeter is the length of the wetted cross-sectional
profile over which shear stress is exercised, which is a better measure for the width in the friction
term than the surface or bottom width. The wetted perimeter is somewhat larger than the width
(in a rectangular profile P = B + 2h), but in alluvial streams where the width is generally much
larger than the depth (B > h), the wetted perimeter is approximately equal to the stream width
(P = B). Lacey found a surprisingly simple proportionality between the wetted perimeter and
the root of the bankfull discharge:

B~ P =k,Q,"° (2.10)

where kg, in metric units, equals 4.8 (s %°m®%). Savenije (2003), making use of Lane (1955)
stable channel theory, suggested that this coefficient of proportionality depends on the flow
velocity at bankfull discharge U, and the natural angle of repose ¢ of the bed material:

TBankfull discharge’ is the discharge at which the river starts spilling over the natural levees. It is the
discharge above which the river can deposit sediments on its banks. Regular overtopping is necessary for the river
to maintain its bed.
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’ w2
ks = m (211)

Leopold and Maddock (1953), who extended the regime concept to American rivers, confirmed
that the width is proportional to the square root of the bankfull discharge. Blench (1952) arrived
at the same conclusion and gave an expression for Lacey’s coefficient kg, which he related to the
bed material and tractive force acting on the sides of the river bed. Later studies in American
streams by Simons and Albertson (1960) showed similar results:

B =k, Q™! (2.12)

albeit that the exponent was slightly increased. The coefficient of proportionality ks appeared
to vary with the soil properties of the banks. The value of kg varied between 3.1 for banks
with coarse non-cohesive material, to 6.3 for sandy banks (in metric units), which is in general
agreement with (2.11). The former value is lower than the latter because sandy banks are easier
to erode. Lacey (1963), in the paper’s discussion, maintained that an exponent of 0.5 is correct.

In estuaries, empirical studies of cross-sectional dimensions have yielded similar relations
between tidal discharge and cross-sectional area. O’Brien (1931) presented a relation between
the cross-sectional area of the estuary mouth and the tidal flood volume P; (the amount of sea
water that enters the estuary on the flood tide), which, in its turn, is approximately proportional
to the peak of the tidal discharge Q,:

Ao P*% Q0% (2.13)

In later studies, described by Bruun and Gerritsen (1960), other equations of the type of (2.13)
were derived based on the stable channel theory of Lane (1955) and Bretting (1958). Bretting’s
formula for estuaries reads:

Ax @, (2.14)

Using Manning’s equation, the “within the banks” case, one can easily demonstrate that the
power of the discharge should be 0.8:

Ao Q® (2.15)

Savenije (2003), who considered bankfull flow as a singularity where Manning’s equation no
longer applies (because the water slope is forced by the overtopping levees and not by the balance
between friction and gravity), found the exponents for B and h both to be equal to 0.5, leading
to a direct proportionality between A and @}, and a bankfull velocity U, that is independent of
Q. This result is close to (2.14). In fact, Bruun and Gerritsen (1960) showed that in the tidal
inlets between the islands along the Dutch coast, there was a direct proportionality between Q,
and A at a rate of a tidal peak velocity v=1 m/s (see Fig. 2.1). Although Bruun and Gerritsen
(1960) use an exponent of 0.9, an exponent of 1 with a peak velocity of 1 m/s is as feasible
(see Fig. 2.1). However, the fact that the exponent of Bruun and Gerritsen(0.9) lies between 1
and 0.8 (between a value for bankfull (“downstream”) and within-bank “at the cross-section”)
discharge respectively) indicates that bankfull discharge (where the banks just overtop) is not
often achieved in estuaries.

The good correspondence between these equations for both estuaries and rivers suggests
that estuaries do not substantially differ from alluvial rivers in their morphology. The main
difference being, that in a river the bankfull discharge determines the channel shape, whereas
in an estuary this is the peak spring-tidal discharge, which (according to Pethick (1984)) also
corresponds to bankfull flow. The latter is based on the experience that Q, just overtops the
banks. Another important difference lies in the fact that in an estuary the water level is governed
by the backwater effect of the ocean, whereas in a river the water level fully depends on the
discharge from upstream.

In general, close to the sea, the bank slope of an estuary is very small due to the fine grain sizes
and the relatively high shear stress exercised by alternating tidal flows with a peak velocity in
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Figure 2.1: Relationship between peak tidal discharge @, and cross-sectional area of the tidal
inlet A as reported by Bruun and Gerritsen (1960).

the order of 1.0 m/s. If erosion occurs near the toe of the bank, then erosion propagates sideways
to maintain a stable slope. This widening process often takes place through bank failure. Since
side slopes are small, widening is several times more than deepening. The widening, in turn,
reduces the stream’s flow velocity and thus its sediment transport capacity, leading to a new
equilibrium. Therefore, an increase in transport capacity of the stream eventually leads to a new
equilibrium with a wider channel.

The widening of an estuary through bank failure is rapid. The opposite process is slower.
Building up a bank by sedimentation, starting from its toe, may take months if not years. Hence
the dynamic equilibrium that is reached as a balance between erosion and sedimentation lies
nearer to the maximum eroded profile than to the minimum (silted up) profile. Thus the width
of a stream mainly reflects the situation of its maximum eroding capacity. In a river, the width
is determined by the bankfull flow, in an estuary by the peak spring-tidal discharge.

Observations in excavated tidal canals in Indonesia (at Karang Agung, in the Banyuasin
estuary, South Sumatra, where the author carried out field surveys in 1989) illustrate this process.
An initially prismatic (constant cross-section) excavated dead-end canal is seriously eroded at
the mouth as high tidal flows enter and leave the canal. The mouth grows deeper, after which
the banks collapse. At the upstream dead end of the canal, where tidal velocities are almost
non-existent, sedimentation occurs. The canal thus gradually acquires a funnel shape.

In the mouth of an estuary two different media interact: the ocean, in which the movement
of water and sediment has a three-dimensional character; and the estuary, where the motion is
primarily one-dimensional (see Ippen and Harleman, 1966). This interaction often leads to the
formation of a shallow area or bar. This shallow reach urges the estuary to become wide and
influences the depth of its upstream reaches.

It is beyond the scope of this book to go into details regarding the morphological processes
that determine channel development. D’Alpaos et al. (2005) have done pioneering work in this
field. Rather, we make use of the particular exponential shape of alluvial estuaries that is
further discussed in section 2.2. Equations describing the exponential variation of width and
cross-sectional area are essential to the approach followed here, and serve the purpose of the
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“seventh equation”. But before we do that, we shall see how the St. Venant’s equations can be
written as functions of tidal velocity and depth.

2.1.3 The 1-dimensional equations for depth and velocity

Intermezzo 2.1: Substitution of (2.15) and (2.16) in (2.1) yields:

aU 1\ . .8Q LA O(h+2)
A B N & Ses iy LA e 1) B S
at +( as rs) oz U 5p T9AT 5 94,5, Y9G,

Since Q = Q(U, B, h), elaboration of 8Q/dz yields:
U 1 au dA A 9 (h+ Zy) U|U|
A— 2a5— — |U(A— +U— ) —asU?— A———= — gAI A—— =0
az+(°‘s rs) ( oz 33:) sV V9T o r 94

where I is the water level residual slope resulting from the density gradient. Defined in this way, I, has a positive
value leading to a water level rise in upstream direction. Rearrangement yields:

O\ (s )02y (o L) 20 0 o o0l
at 57 5] oz S75s) Aoz Yoz 98 YrTIcen T

hdp, LUWUI_,

After introduction of the Froude number, F=U/\/gh, this equation can be modified into:
ou ou 1 h 0A oh U
- + 2as—— U—+ F?(as—— ) 9= +9— +qu—qu+q i =0
rs rs 02 h
where I}, is the bottom slope, which has a positive value if the estuary shallows in upstream direction. I and I,
therefore counteract if the estuary is shallowing in upstream direction.

In the following sections the only dependent variables used in the equations for conservation
of momentum and mass of water are U, Z;, h and B. The main state variables of interest are the
flow parameters: the velocity (U) and the water level (Z = Z;, + h). In Fig. 2.2, the parameters
used in the following derivations are shown in a definition sketch. To obtain the St. Venant
equations expressed in these variables, the variables A and @ have to be eliminated from (2.1)
and (2.2).
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L
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~~— cross-section
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Figure 2.2: Sketch and notation.

The momentum equation

(2.1) is the 1-dimensional equation of conservation of momentum for water integrated over the
cross-section. To eliminate the discharge () and the cross-sectional area A from the equation,
use is made of (2.2), (2.7) and (2.8). The following steps are taken:

0Q OU  9A U UQ
ot Yo TV T A% s os (2.16)
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a 2 /A
(%I/ ) _ <2U8Q U? ZA) (2.17)

Substitution of (2.16) and (2.17) in (2.1) leads to (for details see Intermezzo 2.1):

oUu oU 2 1 h 0A oh U|U|_
at+<2 S__>U3_I+F <5——) A81:+ 8_+g(Ib_I)+gC2h_0 (2.18)

where F is the Froude number: F=U/\/gh = U/cy, co is the celerity of propagation of a
frictionless progressive wave, I, is the bottom slope and I, is the residual slope due to the
density gradient. The Froude number in alluvial streams is smaller than unity and generally
much smaller: in the order of 0.1. Knowing that ag ~ 1, rg ~ 1 and that F? < 1, the term
containing F%(a, — 1/rg) is at least two orders of magnitude smaller than the fourth term and
may be disregarded. Hence, (2.18) may be simplified into:

oUu oU oh U|U|
3t (2 5——)U—+ —+g(Ib—I)+gc2h

ox 7]
Scaling the momentum equation
To assess the order of magnitude of the terms in (2.19) it is useful to define a set of dimensionless
numbers:

=0 (2.19)

g =Y
v
Bt
h
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=
. t
= —
T

where v is the amplitude of the tidal velocity, 7" is the tidal period, |lambday is the length of the
tidal wave (note that |lambdag = ¢oT') and h is the tidal average depth. (2.19) then becomes:

v AU* 1 v? ,6U* h  Oh* V2 U*|U¥|

T ot <2a5 B _) llambdao ~ dz* |lambdao dx* +9 o~ 1 )+g; C*h* 0 (220)
and with |lambdag = coT, co = v/gh, and with the tidal Froude number F = v/cy:

aU* _aU* Crs+1\ . 0U*  10h* T gTo U*|U*|
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All scaled variables in (2.21) now have an order of magnitude of 1 and the relative importance
of the terms are determined by their dimensionless coefficients. Thus we can see from (2.21)
that, since F << 1, the second term (the advective term) is small compared to the fourth term
(the depth gradient term). As a result, the advective term is often neglected. However, we are
not going to do so. Although on average the second term is small, this may not be true at
certain moments during the tidal cycle when the dimensionless velocity gradient can be larger
than unity. Therefore we retain the term, unless there are specific reasons not to do so. What we
can do, however, is neglect the third term representing the higher order effect of ag and rg on
the advective term. Since in alluvial estuaries both as and rg are close to unity, the third term
is an order of magnitude smaller than the second term and, as a result, may be disregarded. We
only disregard the higher order effect on the advection term, but not the term itself. Thus (2.19)

becomes:
oU oUu oh U|U|

U—+96 +9(Ib_1r)+gm

5 U3 =0 (2.22)
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The conservation of mass equation
The conservation of mass equation for water, (2.2), is dealt with in a similar way by making use
of (2.7) and (2.8):

B oh oh ou 0B

Ts<h§+3a)+UBa+hBE+hUa—0 (2.23)
In geometric terms, at a fixed location, the width B is a sole function of h. Hence the first term

can be written as:
p3B _ 4B 3k
ot dh Ot
If we assume a trapezoidal cross-sectional shape with a side-slope 7, then (2.23) can be written

as:

(2.24)

rs (1+ fh) Oh | yoh  p2U L RUOB _, (2.25)

iB) ot ox "ox T B o
In estuaries, the variation of the cross-sectional area over time is mainly caused by variation in
the water level and much less by the variation in width (B > h). Consequently, the term h/iB
is normally small with respect to unity. Therefore, in the first term of (2.21), the effect of side
slope is disregarded, or considered part of the storage width ratio.

oh Oh oU hU OB

—+U—+h—+——=0 2.26
St " os "oz T B oa (2.26)
(2.26) is written in terms of the water depth. It is also possible to write the same equation in
terms of the water level variation Z = h — h (Savenije et al., 2008). If, for a small amplitude
wave, we assume that the depth convergence is small compared to the width convergence, then

(2.26) can be written as:

rsa—Z-l-Ua—Z-f-ha—U-i-ﬂa—A =
ot oz or A Oz
which has the advantage that the depth convergence, important in estuaries where there is a
bottom slope, is implicitly taken into account by the convergence of the tidal average cross-
sectional area A:

Assuming that values for C' and rg can be determined independently through measurements,
(2.22) and (2.26) form a set of two equations with four unknowns: U, h, I, and B (or A if we
use (2.27)) from which A and @ have been eliminated. Therefore, if we want to solve these
equations, we still require two geometric relations to determine the width (or the cross-sectional
area) and the bottom slope. This is done in section 2.2.

0 (2.27)

2.1.4 The effect of density differences and tide

Until this point, the derivations made could apply to any channel of varying shape, whether it is
a river, a canal, a lagoon or an estuary, as long as it can be described as a 1-dimensional system.
Here, the typical hydraulic characteristics are presented for a tidal estuary with salt intrusion of
the well-mixed type. These characteristics are twofold:

e The effect of density differences

e The tidal movement

The density effect

In the downstream part of an estuary, in the period of the year when the upstream fresh discharge
is small, the tidal flows dominate the fresh water flow with the consequence that the water in
that part of the estuary turns saline. If the fresh water discharge from upstream is small, the
mixing in the estuary is generally good and the salinity decreases gradually from the estuary
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mouth in an upstream direction. In the above equations, the residual slope I, has been used to
account for the effect of the density gradient dp/dz on the momentum balance; see (2.22). In
the Intermezzo 2.2, the expression for this density term is derived from the water pressure force,
resulting in:

a_U+U8_U+ a_h_}_ﬂ@ % UlUl—
ot "oz "oz T 20z Yor T9c?h

0 (2.28)

Intermezzo 2.2: The force per unit mass of water F' exercised by the water pressure is defined as:

F(I,Z)z—lw
p dx

where z is the vertical ordinate. The force can be split up into three components (Van Os and Abraham, 1990):

P =20l _ghoe g (kg )0
ox 2p0x p \2 oz
The separation in three terms has been done in a way that only the third term is z-dependent. At the water
surface, where z = Zj + h, the third term is equally large as the second term, but of the opposed sign; at the
bottom, the third term equals the second term. The second term is independent of z, because in a well-mixed
estuary it is assumed that dp/dz is not z-dependent. Integration over the depth from Z;, to Z;, + h and division
by the depth h yields the depth average water pressure force per unit mass:

a(h+2y) ghd, op "

+ Zp g (4 g op

F(z) = —g2 T 20) 9200 9 Op h —2)d

@ g oz 2p 0z  ph Oz é/ (h/2+ 2 — z)dz
b

The first term represents the water level slope. The second term is a density driven force which points up-
stream (in a positive estuary). The last term equals zero, as - in this term - the pressure varies linearly from a
downstream-directed pressure at the surface to an equal but opposed upstream-directed pressure at the bottom.
Hence the second term is the effective upstream-directed pressure as a result of the density gradient. This does
not mean that the third term is unimportant. In some cases it has a dominant effect on salinity intrusion through
gravitational circulation. As a result of a net upstream water pressure near the bottom, and a net downstream
water pressure near the surface (see Fig. 2.3), there exists a time-average upstream flow near the bottom and a
net downstream flow near the surface.

Compared to the other terms in the cross-sectional average conservation of momentum equa-
tion, the density term is small. Scaling of the terms in (2.28) leads to the conclusion that the
ratio of the third and fourth term is of the order hAp/(2np), where 7 is the tidal amplitude and
Ap is the density difference of ocean and river water. In open sea estuaries, this ratio is about
(1025-1000) /2000 h/n = 0.0125 h/n. Even though h/n is supposed to be less than unity, this
is still a small number. However, the third term (the water slope) alternates (with the tide)
between a positive and negative value, whereas the fourth term always exercises a pressure in
an upstream direction (in a normal, “positive”, estuary). This pressure is counteracted by a
residual water level slope amounting to 1.25% of the estuary depth over the salt intrusion length
L - the distance from the mouth to the point where the estuary water is fresh. If, for example,
the estuary depth is 8 m, then the water level rise amounts to 0.1 m over the salt intrusion length
L. In formula, this yields the following expression for the residual slope I,:
LBk o

I =~ L 0.0125L (2.29)
The same relation is obtained by equating the shadowed areas in Fig. 2.3: phAh=Aph?/2. A
water level rise is required to balance the hydrostatic forces. The two forces F; and F» that make
equilibrium in the horizontal plane per unit width over the salt intrusion length L are:

1
F = §p19h§ (2.30)
and
1 2
F2 = Engh.z (2.31)

where the subscripts 1 and 2 indicate the upstream and downstream ends of the salt intrusion
length L. Since (p2 = p + Ap) > (p1 = p), there can only be equilibrium if h; > hy. However,
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Figure 2.3: Resultant hydrostatic forces driving vertical net circulation.

the two forces, although equal and opposite, exert a momentum that drives the gravitational
circulation described in Intermezzo 2.2. Since the arm of the momentum is Ah/3, the moment
M, exercised per unit volume of water per unit width (L h), equals:

1.h 9 1 2
52,00 L3P9R" _ 10p ,

M = Ih = 15927 (2.32)
This moment drives the vertical mixing process, called gravitational circulation, which is further

discussed in section 4.2.

Tidal characteristics

A second characteristic of the lower part of an estuary is that both the water level fluctuations
and the velocity of the water are tidally dominated and that U and h vary according to periodic
functions. In the mouth of an estuary the water level rises and falls periodically. This cyclic rise
and fall produces a tidal wave of primarily 1-dimensional character which travels up the estuary.
The period T of a tidal wave is generally so long that the wavelength A\g=T'cy (co is the celerity
of a wave in an ideal estuary (see section 2.2.2)) is usually much larger than the length of the
estuary considered. In ‘short’ estuaries, where a standing wave occurs, the estuary length is
typically 1/4X. In ‘long’ coastal plain estuaries the estuary length is longer, around 1/2 Ay, but
generally less than Ao (see Table 2.2). To show that exceptions prove the rule, the tidal influence
in the Gambia Estuary reaches a distance of 500 km, which is larger than the tidal wave length.
These long tidal waves have the important characteristic that the associated displacement of the
water is essentially horizontal and parallel to the estuary banks (Ippen and Harleman, 1966).

Tidal waves in alluvial estuaries generally have an amplitude which is small compared to the
depth. The tidal excursion E, the distance which a water particle travels between low water slack
(LWS) and high water slack (HWS), is generally substantially larger than the estuary width but
small in relation to the estuary length. If this is not the case, then the estuary is so wide that it
loses its 1 dimensional character and should rather be considered as a lagoon, a bay or a part of
the estuary mouth. This brings us to the following inequalities:

n<h<B<E<X\ (2.33)

The volume of water entering the estuary between LWS and HWS is known as the flood volume
P;, which in the literature is often referred to as the tidal prism:

HWS
Pt = f Q(O, t)dt =~ A()Eo (234)
LWS

The product of the tidal excursion Ey and the cross-sectional area Ag at the estuary mouth
appears to be a good approximation for the tidal prism (see section 2.3). For the analysis of
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mixing of fresh water and saline water the ratio between the amount of fresh water and salt
water entering the estuary is important. This ratio, in the Dutch literature referred to as Canter
Cremers’ estuary number N, is defined as:

N=T

% (2.35)

where Q; is the fresh river discharge which enters the estuary during the tidal period 7'
A more significant estuary number is the Estuarine Richardson number Ny (Fischer et al.,
1979) which represents the balance between, on the one hand, the potential energy per tidal
period needed for mixing against buoyancy (or the potential energy gained by making fresh
water saline): E,,=AhpgQ;T= 0.5 AphgQT, and, on the other hand, the kinetic energy per
tidal period supplied by the tidal current for realising the mixing E;, = 0.5pA¢EovZ, where vy is
the amplitude of the tidal flow velocity at the estuary mouth:
En ApghQ;T ApghQ;T

T E, TAoEovg  p P

Ng (2.36)

Hence Np=N/F,, where F, is the densimetric Froude number defined as Fy=(p/Ap)v2/(gh).
Fischer et al. (1979) wrote: “If Np is very large, we expect the estuary to be strongly stratified
and the flow to be dominated by density currents. If N is very small, we expect the estuary
to be well mixed, and we might be able to neglect density effects. Observations of real estuaries
suggest that, very approximately, the transition from a well mixed to a strongly stratified estuary
occurs in the range 0.08< Np <0.8 7.

Harleman (1974) used a similar estuary number, which is the reciprocal value of Ng. Prandle
(1985) has a number similar to Harleman & Thatcher, which he also based on energy consid-
erations, but used the ratio of the energy dissipated by friction over the salt intrusion length
E4 = 4/(37)(g/C2)pv®LBT to the potential energy E,, gained by mixing. This yields Prandle’s
estuary number Np: .

8 g 1

Ne =302 h Na
In addition to the Estuarine Richardson number, it accounts for friction and the salt intrusion
length to depth ratio. In particular, the inclusion of the salt intrusion length makes this number
a strong indicator for stratification. Both a large L/h ratio and a small value of Np correspond
with a well-mixed estuary; so a large value of Np corresponds with a well-mixed estuary and a
small value implies stratification. However, because both the friction and the intrusion length are
difficult to determine a priori, this is not a very useful estuary number to predict stratification.

(2.37)

The tidal wave

With respect to their wave celerity ¢, three types of tidal waves can be distinguished:
1. Standing wave
2. Progressive wave
3. Mixed wave

The wave celerity is the speed with which the tidal wave propagates into the estuary. The wave
celerity is also called the “phase speed”, indicating how the phase of the wave changes along the
estuary. It is measured by observing the time that, for instance, high water (HW) or low water
(LW) takes to cover a certain distance along the estuary.

For a standing wave, HW (or LW) is reached everywhere at the same time in the estuary,
indicating an ‘infinite’ wave celerity. A purely standing wave requires either a short estuary with
a length equal to the resonance length A\g/4, or a semi-enclosed body (a bay) which acts as a
storage basin. Since an alluvial estuary gradually changes into a river, a standing wave seldom
occurs in a fully developed alluvial estuary. They are however common in fjords and rias. A
standing wave can also occur if a closing structure blocks the progression of the wave, but then
it occurs only in the vicinity of the structure since the reflected wave, moving in downstream
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direction, quickly loses energy due to friction and widening of the channel (see also Jay, 1991).
A standing wave reaches extreme water levels simultaneously along the estuary. Consequently,
the wave celerity ¢ tends to infinity (as extreme water levels occur everywhere at the same time,
it appears as if the celerity is infinitely large). In addition, HWS coincides with HW, and LWS
coincides with LW. The phase lag ¢ between the fluctuation of the water level Z and the flow
velocity U is /2 (see Fig. 2.4). In Fig. 2.4, the positive direction of flow is in the upstream
direction.
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Figure 2.4: A standing wave.

A purely progressive wave only occurs in a frictionless channel of constant cross-section
and infinite length. Progressive waves occur in rivers or in deep man-made (shipping) channels
of constant cross-section. Alluvial estuaries clearly do not belong to this category. A progressive
wave has no phase difference between water level and stream velocity - they are exactly in phase
(i.e. high water occurs at the same time as the maximum flow velocity). The phase lag ¢ between
water level and flow velocity is zero and the wave celerity ¢ = co = v/gh (see Fig. 2.5).

Alluvial estuaries experience tidal wave of the mixed type, with a phase lag ¢ between 0
and 7/2 (see Fig. 2.6). This means that in an alluvial estuary HWS occurs after HW and before
mean tidal level; and LWS occurs after LW and before mean tidal level. The determining factor
for this phase lag is the shape (the convergence and depth) of the estuary.

Several researchers limited their study of tidal wave propagation to channels of constant
cross-section of infinite length (e.g. Ippen, 1966b; Van Rijn, 1990). In some cases, this led to
incorrect conclusions, which proved persistent. Van Rijn (1990) states that bottom friction and
river discharge are responsible for the phase lag between horizontal movement (current velocities)
and vertical movement (water levels). However, the effect of the river discharge, as we have seen,
is not a phase lag, but a vertical shift of the velocity-time graph, which causes HWS to occur
earlier and LWS to occur later (see Fig 1.5). The second cause mentioned (friction), only has an
indirect and often minor effect on the phase lag. Later in this chapter we see that the phase lag
is closely linked to the wave celerity and the convergence of the banks (see Eq. (2.85). The wave
celerity is indeed related to friction, but the sensitivity to friction is very small if the wave is
amplified or if the tidal range is constant (ideal estuary). The most important factor determining
the phase lag is the shape of the estuary, which, depending on the convergence of the banks,
causes the tidal wave to gain energy per unit width as it travels upstream. The relationship for
the phase lag as a function of bank convergence and wave celerity is derived in section 2.3.

Here we introduce the phase lag ¢ between HW and HWS (see Fig. 2.6), or between LW and
LWS, which is related to ¢ as: € + ¢ = m/2. This implies that cos(e)=sin(¢) and sin(g)=cos(¢).
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Figure 2.5: A progressive wave.

The phase lag £, although disregarded by many authors, is a very important parameter in tidal
hydraulics, characterising the hydraulics of an estuary. It is closely related to estuary shape. The
phase lag is primarily a function of the ratio between bank convergence and tidal wave length (see
section 2.3). In alluvial estuaries, this phase lag is always between zero and 7/2, but typically
in the order of 0.3, resulting in a time lag between HW and HWS of around 30-45 minutes for
a semi-diurnal tide. We also define the dimensionless Wave-type number: Ng=sin(e)=cos(¢),
which defines the wave-type in an estuary. The Wave-type number is always between zero and
unity. If it is close to unity the wave is a progressive wave and the estuary is a frictionless
prismatic channel. If it is close to zero, the wave is a standing wave and the estuary is either
short or looks like a tidal embayment. Because estuary shape is so important in tidal hydraulics,
the next section will elaborate on the topography of alluvial estuaries.

2.2 The shape of alluvial estuaries

2.2.1 Classification of estuary shape

Until recently, most researchers limited their research on tidal hydraulics and salt intrusion to
prismatic (constant width) channels. As we have seen, this is a serious shortcoming, which
moreover misses out on the mathematical opportunity that exponentially-shaped water bodies
have to offer. Throughout this book, we use exponential functions to describe the longitudinal
variation of the cross-section and width. The rate of convergence is determined by a length scale:
the convergence length. This schematisation also allows for prismatic channels. A channel with
constant cross-section is a special type of exponential estuary with an infinitely long convergence
length.

While researchers probably used prismatic channels for mathematical convenience, there were
also practical reasons. Many tests were done on the basis of laboratory experiments, and labo-
ratory flumes are generally prismatic. Moreover, several real-life problems that early researchers
had to analyse concerned man-made shipping access channels, such as the Rotterdam Waterway,
which has a constant cross-section. A vast amount of literature on salt water intrusion deals with
prismatic channels. Until 1992, virtually all formulas that existed to determine the salt intrusion
length had been derived for prismatic channels. As shown in Chapter 4, these equations perform
very poorly in natural estuaries.
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Figure 2.6: A wave of the mixed type showing the phase lag between HW and HWS, and between
LW and LWS.

Only a few estuaries can be adequately described by a prismatic channel. Therefore, through-
out this book, we describe the cross-sectional area as an exponential function of the distance along
the estuary axis:

A=Ay exp (—S) (2.38)

where the z-axis point in the upstream direction and Ag is the cross-sectional area at z=0.
The parameter a is defined as the cross-sectional convergence length (a is the distance from the
mouth at which the tangent through the point (0, Ay) intersects with the z-axis). Similarly, the
assumption that the width varies exponentially yields the equation:

T
B = By exp (—3) (2.39)
where By is the width at the estuary mouth and the coefficient b is the width convergence length.
Combination of (2.38) with (2.39) leads to an expression for the depth:

h = hg exp (#) (2.40)

It follows from (2.40) that, if a is larger than b, the depth increases exponentially; if a is less
than b, the depth decreases exponentially. If a is much larger than b, an unrealistic situation
of exponentially increasing depth is obtained, which in natural channels never occurs. As we
shall see further on, in real estuaries the convergence lengths do not differ much. In the special
case where the two convergence lengths are equal, a=b, the depth is constant along the estuary:
h=hy. This shape corresponds with an ideal estuary, for which a mathematical justification is
provided in section 2.2.2.

For illustration purposes, Fig. 2.7 shows a sketch of two estuaries: The Schelde in Belgium
and The Netherlands, and the Incomati in Mozambique. Figs. 2.8 and 2.9 show the geometry of
these estuaries of which measurements of A, B, and h are available, plotted on a semi-log scale.
Further examples of a variety of estuaries are provided in the annexed topographical data base.
In the Incomati, the individual marks of the depth are based on scattered point observations
where soundings were made during salt measurements. They do not reflect the average depth.
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Figure 2.7: Sketch of the Schelde (a) and Incomati (b) estuaries.

The observations of the cross-sectional area are the result of a complete echo-sounding. It can be
clearly seen that the trends in cross-sectional area and the width conform very neatly to (2.38)
and (2.39). The geometry of the Incomati has an inflection point 14 km from its mouth, while
the Schelde becomes more shallow at 110 km when several tributaries branch off. In spite of
these irregularities, the geometry can be described very well by (2.38)-(2.40). Also, it appears
that a and b are almost, or exactly equal. The question is: what are the factors determining
estuary shape?

Factors affecting estuary shape

The shape of estuaries depends on several factors such as:

Tidal movement -both the vertical and horizontal displacements. The main variable deter-
mining the downstream boundary condition for tidal movement is the tidal range H, a
good indicator for the strength of the tidal movement.

River floods The morphologic activity of the river can strongly influence the estuary shape; if
river floods are large then the estuary gets a more riverine character and a more prismatic
shape. A good indicator for a river flood is the bankfull discharge Q.

Wave action The shape of the mouth of an estuary can depend strongly on wave action. The
existence and shape of spits, bars or barrier islands depends on the predominant direction
of wave attack and on the magnitude of the waves.

Storm action Storms can change the configuration of the estuary mouth considerably. The
permanence of changes inflicted by a storm depends on the amount of sediment supplied
by both the littoral zone and the river itself.

Sediment properties Estuaries with coarse sediments generally have a strong riverine char-
acter and tend to be more prismatic. Estuaries with very fine sediments generally have
mud flats, have a marine character and are more funnel shaped. Clearly the occurrence of
coarse riverine sediments is linked to the occurrence of large river floods.
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Figure 2.8: Semi-logarithmic plot of the geometry of the Schelde estuary: A is the cross-sectional
area in m?, B is the width in m, h is the cross-sectional average depth in m.
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Figure 2.9: Semi-logarithmic plot of the geometry of the Incomati estuary: A is the crosssectional
area in m?, B is the width in m, h is the cross-sectional average depth in m.
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Of these factors, the tidal range is the easiest variable to determine. Moreover, Hayes (1975)
(who followed the classification proposed by Davies (1964)) stated that: “the tidal range had the
broadest effect in determining large-scale differences in morphology of sand accumulation” and
that a classification of estuaries could best be based on the tidal range.

Pethick (1984), although recognising the importance of upland flows, also followed the clas-
sification of Davies (1964) based on the tidal range, which is summarised as micro-, meso- and
macro-tidal estuaries:

Micro-tidal estuaries

When the tidal range is less than 2 m, the estuarine processes are dominated by both the upland
discharge and the wave and storm action from the sea. The sediments carried by the upland
discharge sustain the formation of a delta, whereas the waves produce spits, barrier islands and
a bar-built estuary. The convergence of the tidal channel is small (the convergence lengths a and
b are long).

Meso-tidal estuaries

Estuaries with a tidal range between 2 and 4 m experience such strong tidal action that a marine
delta can no longer be shaped. Instead, two shallow reaches are formed upstream and downstream
of the estuary mouth, and are called the flood-tide and the ebb-tide delta respectively.

Macro-tidal estuaries

In macro-tidal estuaries the tidal range is over 4 m. The tide produces strong tidal currents
which may extend for hundreds of kilometres inland. They do not possess ebb-tide or flood-tide
deltas but have a pronounced funnel shape with a strong convergence (the convergence lengths
are short).

Although this classification has the advantage of simplicity and is probably adequate for a
physical geographer (it allows the classification of the mouth of the estuary), it is not sufficiently
accurate for the engineer interested in estuarine morphology.

Estuaries, according to Dyer (1973), are sediment traps. The sediment supplied by the river
floods is deposited in the estuary as soon as the channel becomes wider and the flow velocities
decrease. In addition, the gravitational circulation sketched in Fig. 2.3 continuously supplies
fine marine sediments which move upstream near the estuary bottom to be eventually deposited
at the limit of the salt intrusion. Only the river floods are able to flush out the sediments which
have accumulated over the year.

Wright et al. (1975), who studied the morphology of Western Australia’s Ord estuary, a typical
macro-tidal estuary, formulated it thus: “In a channel of uniform cross-section, the upstream
increase in tidal asymmetry and accompanying flood-dominated bed load transport would, in
the absence of significant riverine flow, lead to an upstream accumulation of sediment to clog the
channel; only during a river flood would this sediment be flushed”. Hence, a substantial river
flow is required to maintain a channel with a long convergence length.

In a prismatic channel, the tidal flow velocities increase in a downstream direction. Con-
sequently, erosion dominates at the downstream end of such an estuary. If the river discharge
and its sediment load are small, this erosion is not replenished by riverine sediments. In such a
case, the estuary expands to form a funnel shape. If, on the other hand, the upland discharge
and sediment load are large, then the channel is only stable if the convergence length is long.
If the convergence length was short, the channel would soon fill up with riverine sediments.
Consequently, a high upland discharge induces a channel with a long convergence length. A
large tidal range, however, induces a channel with a short convergence length, in agreement with
the classification of Pethick (1984). Hence it is the proportion between these two actions which
determines estuary shape.

Table 2.1 presents a number of characteristics related to estuary shape with a qualification
of how they behave in channels that are predominantly funnel shaped or prismatic. If the pro-
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portion of upland flood discharge to tidal range is small, the estuary has a predominantly funnel
shape; if the proportion is large the estuary is predominantly prismatic. A better classification

Table 2.1: Characteristics of funnel-shaped and prismatic estuaries.

Shape Bay shape Funnel shape Prismatic shape
Character Marine Estuarine Riverine
Convergence length (a) 0 Short 00

HW-HWS phase lag (¢) 0 0<e<m/2 =2

Wave type Standing ~ Mixed Progressive

Salt intrusion Saline Well-mixed Stratified
QvT/P, 0 Small Large

would be based on the proportion of the river flood discharge to the tidal range; or, to make
it dimensionless, the ratio of a river flood volume entering the estuary during a tidal period to
the flood volume P;, the volume of ocean water entering the estuary during a tidal period. This
ratio is a Canter Cremers number for an upland flood discharge. The upland discharge to be
used in the classification is the characteristic annual flood discharge. In regime theory, the flood
discharge that determines the shape of an alluvial channel is the bankfull discharge Q. For the
purpose of classification this discharge is a good selection, not because it is better than any other
criterion, but because it is objective and relatively easy to determine. Riggs (1974), making use
of investigations by Leopold et al. (1964), stated that bankfull stage has a return period of 1.5
years. Personal observations confirm this statement, which may be explained by the fact that
natural river banks need regular replenishment with bed material for the river to maintain its
course.

If a satisfactory relation can be found between Q,T’/P; and estuary shape, then that would
be a better means for classification than the one proposed by Davies (1964) and Pethick (1984).

2.2.2 Assumptions about the shape of alluvial estuary in coastal plains

The assumptions of an ideal estuary

During the many boat surveys carried out by the author during the 1980s in Mozambican and
Asian estuaries (Limpopo, Pungue, Maputo, Incomati, Pungue, Lalang, Tha Chin, Chao Phya),
it appeared that these estuaries, although quite different in hydrology and geometry, had certain
geometric characteristics in common.

First, it became clear that, contrary to expectation, the mean depth of the estuaries did
not significantly change when moving upstream from the estuary mouth. Although the depth
sometimes fluctuated strongly from place to place (deep in bends and shallow in a straight
stretch), there did not appear to be an upward or downward bottom slope. This indicated that
the depth of flow h was more or less constant with distance.

A second phenomenon observed was that the amplitude of the tidal flow velocity v (i.e. the
maximum flow velocity) did not vary much between the mouth and a point near the limit of the
salt intrusion, 50 to 100 km upstream. Even more remarkably, this velocity did not differ much
from estuary to estuary, regardless of whether the tidal range was large (such as in the Pungue)
or small (as in the Limpopo). In both estuaries the amplitude of the flow velocity was in the
order of 1 m/s during spring tide. The absence of a gradient in the velocity amplitude implies a
constant tidal excursion F along the estuary axis. The fact that the peak velocity is similar in
different estuaries is the result of similar physical characteristics of alluvial estuaries (discussed
earlier in section 2.1.1) having an almost direct proportionality between @ and A (e.g. Bruun
and Gerritsen (1960)).

In addition, although most estuaries experience some degree of tidal damping or amplification,
it appeared that the gradient of the tidal range H was modest or, in other words, that the tidal
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range remained fairly constant along these estuaries, at least in the tidal dominated part of the
estuary.

It should be noted that these are all coastal plain estuaries unaffected by steep topography.
In estuaries where the coastal plain is short, with a steep underlying topography, another type
of estuary occurs, which we shall describe in section 2.2.3.

The experiences gained during these surveys formed the inspiration to develop a salt intrusion
model (Savenije, 1986) based on the following assumptions regarding the shape and hydraulics
of an alluvial estuary:

g—: ~0 (2.41)
%‘;—f - —% (2.42)
%—Z ~0 (2.43)
g—f ~0 (2.44)

It should be observed that these are all partial derivatives with respect to the distance along the
estuary axis. The width and the depth vary over the tidal period (intra-tidal) and the tidal range
H, and the tidal excursion E vary from day-to-day as the tidal wave changes from neap tide to
spring tide (inter-tidal). As a result, H and E are functions of time. However, for a certain tidal
wave that travels up an estuary they are merely functions of space.

(2.41) and (2.42) agree with (2.38) -(2.40) if a = b. These equations correspond to an “ideal
estuary” as described theoretically by Pillsbury (1939, 1956), which in addition to the above
geometric conditions requires a constant Chézy coefficient. Apparently a funnel shaped estuary,
with the width obeying an exponential function, is best suited to preserve a constant tidal range
and, therefore, to maintain a constant amount of wave energy per unit volume of water. The
contracting width tends to increase the tidal range, whereas the friction tends to reduce the
tidal range. Dyer (1973) formulates it thus: “As an estuary narrows towards the head, the tidal
range tends to increase upstream because of the convergence, but decrease because of friction”.
In an ideal estuary (according to Langbein, 1963) the convergence of the estuary banks is just
sufficient to balance the damping of the tidal range due to friction.

A constant amount of energy per unit volume of water implies that energy dissipation by
friction is balanced by energy gained through convergence. Since in an exponentially shaped
estuary the latter is constant, the amount of energy spent per unit volume of water is also
constant. The latter is a condition for morphological stability that is also used to describe river
channel networks. Rodriguez-Iturbe & Rinaldo (1997; p267) use the criterion of “equal energy
expenditure per unit volume” to describe and simulate natural topographies. An ideal estuary
is the coastal version of a self-organised river network, the difference lying mainly in the forcing
boundary condition. An estuary is forced by the tidal variation at the downstream boundary,
while a river is forced by the river discharge at the upstream boundary. A brief theoretical
justification of an ideal estuary follows.

Theoretical justification for the ideal estuary

It can be shown that the (2.41)-(2.44) are a consistent solution of the general St.Venant equations
(as formulated in (2.22) and (2.26)), under the following assumptions.

1. Since the Froude number is small, the non-linear convergence term of (2.22) is much smaller
than goh/0z, and may therefore be disregarded.

2. The tidal amplitude to depth ratio is small and the resistance term U|U|/(C2h) of (2.22)
may therefore be linearised.

3. The velocity of the fresh water discharge u is negligible when compared to the tidal velocity
amplitude v.
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4. In the downstream part of the estuary, the mean tidal water level Z; is independent of z
(implying that the residual slope I, in (2.22) can be disregarded as well).

5. The storage width ratio in (2.26) is close to unity.

6. The water movement (both velocity and water level) can be described by a combination of
harmonics.

7. The damping of both the tidal range and the amplitude of the tidal velocity is small. Hence
the relative variation of H and E with z is small or negligible.

The first six assumptions are not very restrictive and are, in fact, often made in alluvial estuar-
ies (although we shall use less restrictive assumptions in section 2.3 and Chapter 3). The last
assumption (#7) assumes that the tidal amplitude n and the tidal velocity amplitude v are both
near constant. This assumption may not by made in estuaries that are forced by the topography
to be short (see section 2.2.3). In short estuaries a # b. In coastal plain estuaries, however, par-
ticularly in the downstream marine-dominated area, the tidal range and the velocity amplitude
are not significantly damped or amplified. In the following we prove that the assumption of an
undamped (small amplitude) tidal wave leads to the topography of an ideal estuary.
Assumptions (1) and (2) imply that use can be made of the linearized St. Venant equations:

oUu 0z
ot +ga—z +R,U=0 (2.45)
0z th
BE + Bha— oz 0 (2.46)

(2.45) follows from (2.22), where Z = h + Z, is the water level and Ry, is Lorentz’s' linearised
friction factor:

R = (2.47)

g0
=i e

i
c?
In (2.46) a substitution has been made of 902 / Ot = 0h/0t, since the bottom slope does not vary
at the time-scale considered.

If we take into account assumptions (3)-(7), then the velocity U and the water level Z can be
written as undamped functions of the variable £ (Savenije (1986), after a personal communication
by Kranenburg, 1985) with constant amplitudes 7 and v:

U=v®(—¢) (2.48)
Z=n¥(€)+h (2.49)
E=wt—¢(z)+& (2.50)

where ¢ is the phase lag between HW and HWS, w is the angle velocity (w = 27/T") and ¢(z) is
the phase shift resulting from wave propagation. The functions ® and ¥ are periodic functions
with unit amplitude. Substitution of (2.48), (2.49) and (2.50) in (2.45) and (2.46), and some

rearrangement yields:
d® o¢ dv o

Ud_§E+ df P +Rivd =0 (2.51)
d® 9¢ d¥ 9¢ dBh
vBhgr gt B 5 + qg V2 =0 (2.52)
Further elaboration yields:
do do¢
w <Ud_§> 93 ( d{) + Ry (v®) = (2.53)

I'While the Nobel prize winner H.A. Lorentz is not normally associated with hydraulic engineering, he pioneered
the numerical approach in hydraulic engineering after his retirement, when he took up the job of predicting the
effect of the closure of the Zuiderzee (the main inland sea of The Netherlands) on the tidal variations in the
semi-enclosed Waddenzee.
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do [ d® dv dBh

—Bh& (UE) + Bw <17¥> + dr (v®) =0 (2.54)
The solution only suffices if ® and ¥ are solely dependent on ¢ and there is therefore a propor-
tionality between the coefficients of the terms of each equation (all coefficients are constant or

proportional to each other):

d
w o gd—f o« Ry, (2.55)
and: dé dBh

As a result of this proportionality, Ry, is a constant, d¢/dz is a constant (¢p=wz/c), h = hg is
a constant (confirming (2.41)), and B=By exp(—z/b) (confirming (2.42)). The condition that
d¢/dz is a constant implies that an observer travelling with the wave celerity (z=ct and &= &)
sees no change in both U and Z: U=U (&) and Z=Z(&).

Moreover, the function ¥ is given by the downstream boundary condition. This implies that
there are two equations with only one unknown function ®. Hence the equations are dependent
and there should be proportionality between the equations. Making use of the results from (2.56)
yields:

we —gw —Rpb

—hw  we  h
This leads to the classical equation for the tidal wave propagation ¢2 = gh and also to the
relation between convergence and friction: b = ¢/Ry. The first equation is the same as the
classical equation for the frictionless tidal wave in a prismatic channel, which apparently also
applies to an ideal estuary, but which does not apply in estuaries where there is some degree
of tidal damping or amplification. The second relation is the condition for an ideal estuary,
where the energy gained by convergence is balanced by the energy lost through friction. These
two equations are special cases of the general solution derived from the non-linearised equations,
applicable to damped or amplified tidal waves, and presented in section 3.2.

Assumption #7, expressed in (2.43) and (2.44) , leads through the use of the linearised St.
Venant equations to (2.41) and (2.42) , under the condition that b = ¢/Ry,. Or, in other words,
assumption #7 is only justified if the friction and the depth are constant with z, the width varies
exponentially and the friction is compensated by convergence. Section 3.2 shows, also for the
non-linear St. Venant equations, that if friction and convergence balance out (b = ¢/Rp), there
is indeed no tidal damping and c=+/gh.

Several other authors have made use of similar geometric conditions as in (2.41)-(2.44). For
example: Ketchum (1951) derived a theory based on a horizontal estuary bed; Abbott (1960)
used a horizontal bed for the Thames; Hunt (1964) used a constant depth and an exponentially
varying width for the Thames; Harleman (1966), in Ippen (1966a), used a constant depth and
an exponential width variation for the Delaware.

McDowell and O’Connor (1977), elaborating on the concept of ideal estuaries developed by
Pillsbury (1939), stated that since an ideal estuary implies that a unique relationship exists be-
tween maximum tidal discharges and channel cross-sectional area at all points along the estuary,
this unique relationship might also exist between different estuaries of similar bed material. They
analysed the relation between the size of tidal inlets and the maximum tidal flow in much the
same way as Bretting (1958) and Bruun and Gerritsen (1960) did.

In the following empirical assessment of the applicability of the shape of an ideal estuary, it
will be demonstrated that, although the assumptions required for an ideal estuary do not fully
apply in most estuaries, the geometry of coastal plain estuaries generally can be described by
(2.41) and (2.42) and that, even if there is some bottom slope, (2.38) always applies.

(2.57)

Empirical illustrations

We have already seen two examples of how real-life alluvial estuaries correspond with the shape
of an ideal estuary. In Table 2.2, more examples of estuaries are given. The topographical
data base provides more details of more estuaries. Table 2.2 provides values for a number of
typical parameters that characterise alluvial estuaries. Besides data on shape (B, A and h),
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there is information on the normal spring tidal range (H), the classical wave celerity (c;), the
tidal amplification/damping (6x) and the tidal intrusion length (L7)

Table 2.2: Characteristic values of alluvial estuaries.

A, Al B, h a b H C, On Ao Ly Xo/Lp
Estuaries (m?) (m?) (m) (m) (km) (km) (m) (m/s) (107°m~!) (km) (km)
Mae Klong 1400 250 5.2 102 155 2.0 7.1 4.2 317 120 0.38
Limpopo 1710 1340 222 7.0 50 18 1.1 8.3 0.0 368 150 0.41
Lalang 2550 371 10.6 217 96 2.7 10.2 -1.0 453 200 0.44
Tha Chin 3000 1380 3600 5.3 87 87 26 3.0 -9.4 133 120 0.37
Sinnamary 3500 1210 2100 3.8 39 13 29 6.1 -5 271
Chao Phya 4300 600 7.2 109 109 2.5 7.0 -3.6 311 120 0.32
Ord 7900 3200 4.0 221 152 5.9 6.3 0.0 278 65 0.23
Incomati 8100 1750 4500 29 42 42 1.4 3.6 -13.0 160 100 0.42
Pungue 28000 6512 3.8 21 21 6.7 6.1 -8.5 271 120 0.44
Maputo 40000 6460 9000 3.6 16 16 34 5.9 1.0 264 100 0.38
Thames 58500 7480 7.1 23 23 43 8.3 2.3 371 110 0.30
Corantijn 69000 34600 30000 6.5 64 48 23 8.0 -1.7 355 120 0.34
Gambia 84400 27200 9687 8.7 121 121 1.2 9.2 -1.0 410 500 1.22
Schelde 150000 15207 10.0 26 28 3.7 13.0 3.8 577 200 0.45
Delaware 255000 37655 6.6 41 42 1.5 8.0 1.7 357 200 0.56

In some estuaries the longitudinal profile is split in two parts (mostly when there is a clear
trumpet shape near to the estuary mouth). In those cases the logarithmic relation for A or B
consists of two branches. For these estuaries a value of Aj is presented, which corresponds to the
value that would have been obtained if the upstream branch were extended towards the estuary
mouth. The observed rate of damping dy, is defined as:

10H 10y

on = Hoz  noz (2.58)

Since the tidal range is about twice the tidal amplitude, the damping of the tidal range is the
same as the damping of the tidal amplitude. Some estuaries with a positive value of y are
amplified (e.g. the Thames, Delaware and Schelde), whereas the ones with negative values are
damped (e.g. the Incomati, Pungue and Tha Chin). Remarkably, many have hardly any damping
(the Limpopo, the Lalang, the Maputo, the Gambia). These are close to ideal estuaries.

2.2.3 Assumptions about estuary shape in short estuaries

Many alluvial estuaries are not coastal plain estuaries, but are forced by the underlying topog-
raphy to be short. This occurs when the slope of the land is too steep for a long coastal plain to
develop. There are many of these estuaries in Great Britain, Australia and the USA, although
these countries also have several coastal plain estuaries (e.g. Thames, Delaware, Mississippi).
Mountainous islands generally have short estuaries as well (such as in New Zealand). Prandle
(2003), for instance, mainly describes this type of estuary and therefore uses a different geome-
try than that presented in this book. The paper by Wright et al. (1973) is one of the few that
specifically deals with short estuaries and also compares them to a coastal plain estuary. The
interesting thing is that Wright et al. compare two branches of the same estuary system, the Ord
and King rivers, which both are part of the Cambridge Gulf in the north of Western Australia.
Another example of such a system is the Banyuasin-Lalang system on Sumatra, Indonesia. Here
the Banyasin is a short estuary and its main tributary, the Lalang, a coastal plain estuary. The
Ord is a typical short estuary that fits the classification of Wright et al. (1973), namely:

1 a strong funnel shape with a cross-sectional area that obeys (2.38);
2 the length of the tidal intrusion is finite, forced by the topography, and equal to A/4;

3 a standing wave occurs, whereby the amplitude of the wave obeys:
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n(z) = no cos (27r£> (2.59)
Ao
where 7 is the tidal amplitude at the estuary mouth.

4 there is no tidal damping or amplification on top of this, since there is a balance between
friction and convergence.

5 both the depth and the width reduce exponentially

The fourth item is motivated by the entropy principle, whereby there is uniform dissipation of
energy, as discussed in the previous section for coastal plain estuaries. To prove the validity of
(2.59), Wright et al. applied Green’s law and field observations (However, Green (1837) assumed
frictionless flow and a progressive wave).

Several short estuaries, with a relatively small river discharge in relation to the tidal flood
volume, appear to fit in this category. It will be shown in section 3.1 that the assumption of a
purely standing wave is at par with an un-amplified tidal wave. In fact, a completely standing
wave implies zero friction, thereby introducing tidal amplification. The stronger the funnel shape,
the greater the amplification. An amplified wave also amplifies the velocity amplitude. However,
the velocity amplitude at the head of the estuary should be zero, and at its maximum near the
mouth of the estuary. So short estuaries with a standing wave are forced to a length of A\o/4 (or
3)\o/4), with a velocity node at the head of the estuary.

The condition of zero friction to produce a purely standing wave is not very workable in
reality. There will always be friction and so the wave will not be a purely standing wave. This is
also observed by Wright et al. (1973), who noticed that, although the wave (seemingly) travels
very fast at almost infinite speed (HW and LW occurring everywhere at the same time and slack
occurring almost at the same time as HW and LW), there is a discernible time lag between the
occurrence of HW along the Ord estuary, and even more so at LW. As a result the wave does
not completely behave as a standing wave (although ¢ is close to zero) - there is friction, and
there is a modest bottom level gradient (the convergence length of the depth is almost twice as
large as the width convergence length, making the width convergence twice as pronounced as the
shallowing).

Therefore, although the theory is a bit more complex than described by Wright et al. (1973),
their schematisation is quite workable. We also see here that the exponential shape used for
coastal plain estuaries, particularly (2.38), may also be applied to short estuaries.

2.3 Relating tide to shape

2.3.1 Why look for relations between tide and shape?

Although ideal estuaries have a simple topography determined by: By, b and h, the latter
parameter is not always easy to determine. The width at the estuary mouth and the width
convergence length can be readily measured from a map or aerial photograph, but the tidal
average depth is much more complicated. With an echo sounder or a drop-weight, we can sound
the depth at different locations. Determining the cross-sectional average depth along an estuary
however is a lot of work. And there are other important tidal parameters that are not easy to
measure, such as the tidal excursion E and the flood volume P;.

To determine the estuary depth, an extensive hydrometric survey is required of cross-sectional
areas at a number of locations. For reasonable accuracy, a minimum of 10 cross-sections over the
salt intrusion length is required. The tidal excursion can be measured directly by using floats,
but such a method is cumbersome. It requires a full tidal cycle and has a relatively low accuracy
due to wind effects and the non-uniform velocity distribution over the cross-section. Also, floats
tend to get stuck in the estuary bends. The flood volume is very difficult to measure directly,
requiring an extensive discharge measurement at the mouth of the estuary during a full tidal
cycle. So let us see if we can derive analytical equations for this purpose, on the basis of the
geometry of an ideal estuary.
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2.3.2 Intuitive derivation

Let us start with the flood volume P;, which is the integral of the tidal discharge between LWS
and HWS at z=0:

HWS
Pi= [ Q(0,t)dt (2.60)
LWS

where Q(0,t) is the discharge at the estuary mouth. Since this integral is difficult to determine

/|

a) b)

Figure 2.10: Definition sketch for the dial flood volume: (a) as the product of B, h, and E; and
(b) as the product of the surface area O and H’, the tidal range between slacks.

through direct measurement, it is approximated in two ways. The first is by computing the
flood volume as the tidal prism enclosed between the envelopes of HWS and LWS; the second,
by equating it to the product of the tidal excursion with the cross-sectional area of the estuary
mouth (see Fig. 2.10). The first approach yields:

P, ~ | H'Bdz (2.61)
0

where H'(z) is the range between HWS and LWS as a function of the distance - i.e. the difference
between the envelopes of the water levels occurring at HWS and LWS along the estuary. Here it
is assumed that these levels are reached almost instantaneously along the estuary, implying that
the wave length is large compared to the length of the estuary. In addition (for this derivation
only) it is assumed that the tidal range is damped exponentially:

H = Hpexp (6 z) (2.62)

This is the integral of (2.58) for a constant rate of amplification/damping, where Hj is the
tidal range at the estuary mouth and §p is the longitudinal rate of amplification/damping of the
tidal range (if 5 <0, the wave is damped). The relation between H and H’ can be seen simply
from Fig. 2.6 and reads:

H' = Hcos(e) (2.63)

where ¢ is the phase lag between HW and HWS, which is considered constant along the estuary
axis. Hence (2.61) becomes:

_ HoBob O os(e) (2.64)

0 1 _ Hy
P, = HyBycos() (j)' exp [(JH — 5) :z:] dz = T 6Hbcos(e) =1 6ub
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where O is the surface area of the estuary. This is the product of the surface area O and H’,
taking into account tidal damping. If the wave is damped, then the flood volume is smaller;
if there is amplification than the flood volume is larger. There is an additional error made by
assuming that the surface area does not vary significantly between HWS and LWS. In view of the
many assumptions made, this approach does not seem very accurate. However, Savenije (1992a,
1993a) using simulations of a hydraulic model, showed that the equation is accurate for a wide
range of estuary shapes (depth ranging between 4 and 10 m; convergence length ranging between
10 and 100 km; tidal range ranging between 1.2 and 6 m).
The second approach yields:

HWS
P= A()U(O, t)dt ~ AoEy (265)
LWS

where Ej is the tidal excursion at the estuary mouth. The assumptions made here are: 1)
that the cross-sectional area does not vary significantly with time; and 2) that the integral over
time of the Eulerian velocity U between low water slack (LWS) and high water slack (HWS) is
approximately equal to the tidal excursion E, whereas E is the integral between LWS and HWS
of the Lagrangean velocity V' of a moving water particle. The first assumption is acceptable
in deep estuaries, the second is only acceptable if the Froude number is small. To support
this equation, Savenije (1992b, 1993a) demonstrated with numerical model simulations that it is
indeed accurate as long as the tidal range to depth ratio is smaller than unity, implying that the
Froude number is small.
Equating (2.64) and (2.65) yields:

Hyb
mCOS(E) = hOEO (266)

Essentially, this equation is the conservation of mass equation, where we have equated the volume
change in the estuary between HWS and LWS to the amount of sea water entering the estuary
during the same period.

Although a lot of assumptions were made in deriving this intuitive equation, it is still a very
interesting equation, providing a relationship between two parameters that we find difficult to
measure directly: ho, and E,. In the following, we derive an expression for the tidal excursion
on the basis of a Lagrangean analysis, where we follow the water particle as it flows between
LWS and HWS. Subsequently this Lagrangean analysis is also an adequate tool to develop (2.66)
more strictly.

2.3.3 Lagrangean analysis of a water particle

In a Lagrangean approach, the reference frame moves with the velocity of the water particle.

The following equations apply:
dz

V= m (2.67)
t
S= / vt (2.68)
0
and hence:
r=x9+S (2.69)

where V' = V(z,t) is the velocity of the moving particle and S(z,t) is the distance travelled by
the particle from a starting point zy. Analysis of model simulations showed that the velocity
variation in a Lagrangean reference frame was surprisingly regular and that it could be described
as a simple harmonic (Savenije, 1992a). This is not so surprising. The forces working on the
(moving) water particle are cyclic, hence the reaction is also cyclic; much like a person on a
swing. Although the harmonic assumption in the Lagrangean reference frame makes complete
sense, most authors apply harmonic functions in the Eulerian reference frame. However, this
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causes an unnecessary error, associated to the Stokes drift (see section 2.4). While the non-
linearity of the friction generates higher harmonics and distortion of the tidal wave, this is the
same in both the Lagrangean and Eulerian reference frame.

If we now assume that the water particle moves according to a simple harmonic, starting at
zo at LWS (¢t = 0), then the velocity can be described by:

V(z,t) = v(z)sin(wt) (2.70)
2m
=7 (2.71)

where w is the harmonic constant. For the time being it is assumed that the influence of the fresh
water discharge on the tidal velocities in the saline area is negligible. If there is a substantial
fresh water discharge, then this has to be taken into account. We shall analyse this effect in
sections 2.5 and 3.3.

In (2.70), the effect of damping is present through the z-dependency of v. In contrast to what
was assumed in the previous section, the damping of the velocity amplitude is not necessarily
exponential, meaning that the damping rate of the tidal velocity dy is not necessarily constant
with z. Similar to the definition of the damping/amplification of the tidal range in (2.58), the
damping/amplification of the tidal velocity amplitude is defined as:

_1dv

T woz

oy (2.72)
where &y is the longitudinal relative rate of amplification of the velocity amplitude (which is
negative in the case of damping). In the following derivations this damping is not neglected, but
considered to be small over the distance travelled by the water particle (|6 E| < 1).

The distance travelled by the water particle is found by substitution of (2.70) in (2.68) (for
details see Intermezzo 2.3):

S = 5 (1 — cos(wt)) (2.73)

The tidal excursion E (the distance travelled between LWS and HWS) is obtained by substi-
tution of t = T'/2:

vT_2_v

E=51/2)="== (2.74)

which is a useful equation for the calculation of the tidal excursion. We saw in Figure 2.1 that
the tidal velocity amplitude at spring tide in alluvial estuaries is remarkably similar all over the
world: about 1 m/s. This offers the opportunity to estimate the order of magnitude of the tidal
excursion even in ungauged situations. Consequently, for a semi-diurnal tide, the tidal excursion
is about 14 km near spring tide. Savenije (1992b, 1993a) confronted with a wide range of model
simulations, demonstrated that this equation underestimates the real value by 8%.

Intermezzo 2.3: The integral of the Lagrangean velocity is the distance travelled S:

t t
v v 1
S = in(wt)dt = — [ —d t) = —— t)|t + — t)d
/usm(w ) /w cos(wt) 5 cos(w )|0 -+ " /cos(w )dv
0 0 0
Since dv = dv/dz (Vdt) = véy Vdt = v2dysin(wt)dt, the second integral reads:
t t
1 V25 25y
= = U i — t
" /cos(wt)dv_ » /cos(wt)sm(wt)dt = cos(2wt)|0
0 0

2

Hence:
S= 5 (1 — cos(wt) + 1f—‘:(l - cos(2wt))) = 5 (1 — cos(wt) + ETJU(I - cos(Zwt)))

Since |[§E| < 1 in alluvial estuaries, the latter term may be disregarded. Similarly, differentiation of V with
respect to t yields:

v _ wvcos(wt) + d—vsin(wt)
dt dt
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The last term is further elaborated, realising that dv/0t=0:

U

d—vsin(wt) = @Vsin(wt) = Syv?sin?(wt) = wv ) sin?(wt)
dt dz 2

Hence:
v (cos( t) +
- = Wv W
dt

E;iu sin? (wt)) ~ wvcos(wt)

as the term containing 6y F/2 may be disregarded. Note that in these derivations dy may still be a function of
z.

If we assume that the Lagrangean velocity of a water particle is a pure sinus, then the har-
monics are distorted in the Eulerian reference frame. Through the introduction of the argument
¢ (similar to (2.50)), the above equations can be transformed into a Eulerian reference frame:

E =wt — M (275)
yielding:
U = v sin(§) (2.76)

where U = U(z,t) is the velocity of flow at a certain location at a certain time and c is the tidal
wave celerity. If we move with the water particle, then z = 2o+ S, £ = wt and U = V. At
T = zo + E, a time lag of E/c occurs between HWS of the moving particle and HWS observed
at =z (see Fig. 2.11). This time lag, which is only observed in the Eulerian reference frame,
is not a time lag the water particle experiences. It is purely an artefact of Eulerian referencing
where we continuously ‘look’ at a different water particle. This phenomenon is related to the
Stokes drift discussed in section 2.4. Using (2.75) and (2.76), the Eulerian continuity equation

30

—eo— Distance travelled [km]
—=— Velocity moving particle [dm/s]
A Velocity fixed location [dm/s)

Time [hours]

Figure 2.11: Velocity (dm/s) and distance traveled (km) by a water particle.

for one-dimensional flow, (2.26), can be transformed to the Lagrangean reference frame, where
it can be solved analytically. Combination of (2.26) with (2.39) yields:

oh oh oUu hU
T56t+U6z+h6x 5 0 (2.77)
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Partial differentiation of (2.76) with respect to z for a moving particle where z=xz,+S, and
combination of the result with (2.72) and (2.75), yields a Lagrangean expression for the partial
derivative of U with respect to z:

ou 1dV
9 - odt + oV (2.78)

the details of which are explained in Intermezzo 2.4:

Intermezzo 2.4:

au v o€ 1dV ¢
= = D sV S
dr Oz sing + veosd dz vV + w dt oz
23 w as w v 1 w
2o fh-2)="f1-Z2a- ) =—-=2(1-6yS
oz c ( 81:) ¢ ( oz w ( cos(w ))) c ( vS)
Substitution of 9¢/dz and dV /dt (from Intermezzo 2.3) in the equation for 8U/dz yields:
U 1dV
oz ~ 0V L)

(2.78) is obtained under the assumption that |6;;S| < |67 E| < 1. In section 2.5 this term is retained to assess its
impact, but we also see that the effect of this damping term is negligible (an order Froude smaller than the first
damping term). Note that in this derivation § may still be a function of z.

For higher order computations it maybe useful to also have the second spatial derivative of U. This reads
under the same condition that |5 S| < |6y E| < 1:

2 2 2
O S T
ox? oz oz oz

Moreover, the variation of the water depth with time for a moving water particle is defined
by:
dh  Oh oh

q = ot + Va (2.79)

Substitution of (2.78) and (2.79) into (2.77) yields the continuity equation for a moving volume
of water (U = V) in a Lagrangean reference frame. We can further assume that: 1) rg is close to
unity; and 2) the Froude number is small. As a result, the second term of (2.79) is much smaller
than the first. Therefore the introduction of the storage width ratio in the second term of the
water balance equation creates only a third order error. Hence:
dh hdV (1 —dyb)
TS = + o d + hV 5 (2.80)
Elaboration of (2.80) yields:
qdh _ (1= 6ud)
*h b
The first term of the right hand member is a conservation of mass term leading to depth gain
as a result of bank convergence and deceleration due to damping, which the moving particle
experiences. The second term is a conservation of mass term that a drives water level variation
due to the velocity variation. Integration between LWS (t=0) and ¢ yields:

(1 —dyb) " 14
b c

When plotted against the distance travelled, this is an exponential function of an inclined ellipse
(see Fig. 2.12). The drawn curve through the heart of the inclined ellipse represents the first
term on the right hand side. If damping is small and b — oo this term is zero (as in a prismatic
channel with no damping) and the inclination of the ellipse disappears. In this case, the velocity
and water depth of the moving particle are in phase, creating an undamped progressive wave.
This is in agreement with other analytical methods where a progressive wave occurs in a channel

of constant cross-section, of infinite length, and without friction.
In the derivation of (2.82) it appears that the factor (1 — d;;b) has been assumed constant

with z. This is obviously only correct if either the damping/amplification is modest (|dyb| < 1),

o+ ~dv (2.81)

rsin(h) = rsln(hLws) + S (2.82)
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or if the damping is constant with = (exponential damping or amplification). In the intermezzo

2.5 we demonstrate that (2.82) is indeed correct if damping/amplification is modest, irrespective
of the damping equation used.

Intermezzo 2.5: Rearrangement of Eq. (2.81) and using §yy = dy yields:

dh 1 1 dz dV dv dz dV dH
— = -d -dV -épdz=—+ — - — = — + — — —
STt e S T
Integration from LWS to a certain point in time yields:
rgln( h ) =§+Z—(lnH—ln Hpws)
hrws b ¢
We can make use of the function f(z) =1n H —In Hpy s and use the first order Taylor approximation:
d 1 dH
~ (z — — e=S—— 4 .. =86+ .....
f(z) ~ (z —zLws) 1 (In H) + Aa T +

As long as S§ < 1, this is valid for every damping function, which does not have to be exponential with constant
4. As a result, the general solution of the equation is:

h S Vv
1 =—+4+—-845
rsn(ths) b

——v
]
28 4 h exp(-x/b)

Distance travelled [km]

Figure 2.12: Velocity (m/s) and elevation (m) of a moving water particle as a function of the
distance travelled (km).

2.3.4 Finding an expression for the phase lag

Equating the left hand side of (2.80) to zero and substitution of V' from (2.70) and dV'/dt (from
Intermezzo 2.3), allows the determination of the time at which high water (HW) and low water
(LW) occur. Subsequent integration yields:

w b
wtgw = ™ — arctan (;—(1 — 6Ub)) (2.83)
tiw — 27 — arctan £ — 0 (2.84)
witw = 2m ¢ (1—dyb) '
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The phase lags for HW and LW are defined as: ey =w (T/2 —tygw) and epw = w (T — trw)-
Assuming that the wave celerities for HW and LW are the same (which is acceptable as long as
the tidal amplitude to depth ratio is small) the expression for the phase lag is:

e = arctan <ﬁ) (2.85)

The definition of the arc-tangent implies that —7/2 < &€ < 7/2. For damped or moderately
amplified tidal waves the argument of the arc-tangent is positive (1-dyb >0), therefore 0 < & <
/2.

Substitution of the times of occurrence of HW and LW in V (yielding Vyw and Viow ) and
in S (yielding Sgw and Spw) yields:

1+ cos(g)

Shw = 5 (1 + cos(e)) = B—— (2.86)
SLw = 5 (1 —cos(e)) = EI_CTOS(E) (2.87)
Vaw = vsin(e) (2.88)
VLW = —vsin(e) (2.89)

2.3.5 The Geometry-Tide relation

We can integrate (2.81) to yield an analytical equation that links the estuary geometry to the
tidal characteristics. For that purpose we integrate the equation between LWS and HWS:

HWS . HWS (1 ub) HWS
dh 1 11—y

/ e | Vg / dz (2.90)

LWS LWS LWS

Starting at LWS at z = 0 this leads to:

(1 —dpb)

o (E=0) (2.91)

1
In(hgws) — In(hrws) = rec (Vaws — Voiws) +

and because the velocities at LWS and HWS are zero:

7 ’ ! _
haws _ h+H /2 -1 H exp ((1 5ub)E)

= = B = = 2.92
hrws h—H'/2 +h—H'/2 rsb ( )

We now develop the exponential function into a Taylor series, whereby exp(z) = 1+z+x2/2+z3/6...
Comparing the Taylor series with (2.92) we can see that the argument of the exponential function
is of the order H'/h. We now define the dimensionless parameter (' = H’/h. We then obtain:

1—6pb
'I‘sb

rsHbcose
hE (1 — éyb)

1 , 1-6pb \?
E+6(1—(/2)( rsb E) + ...

1
=(1-¢/2)+50-¢/2)
If we substitute the argument of the exponential function by ¢/, we obtain:

rsHbcose 1, 1 5
e ———— 1 — — — —
hE (1 —00b) ¢ 02t

Hence for 0 < ¢’ < 1, an accurate approximation of (2.91) is:

H_nw_i(l—&ub)

E v rsb cos(e) (2.93)

which confirms that ¢’ is indeed a correct approximation of the argument of the exponential
function.

Hubert H. G. Savenije



Chapter 2: RELATING TIDE TO SHAPE 53

Equation (2.93) is essentially the same as (2.66), which we derived intuitively from the water
balance equation. Now that the equation has been formally derived, it provides an accurate
relation between H/E and h/b. This is the analytical relation we were looking for to relate the
depth to the tidal excursion. We shall call it the “Geometry-Tide relation” since it presents a
direct relation between the tidal scales H and E and the geometric scales h and b. It is important
to realise that the ratio of the vertical to the horizontal tidal range (H/FE) is directly proportional
to the ratio of the vertical to the horizontal scales of the estuary shape (h/b). This is a very
practical equation to derive an estimate of the estuary depth (notoriously difficult to observe)
on the basis of observable tidal parameters (E, H, J, €) and the convergence length b.

An alternative derivation can be made on the basis of (2.27), which uses the cross-sectional
area convergence length a and which is expressed in terms of the water elevation Z above the
mean depth h. Then the Lagrangean equation becomes:

dZ (1 - 6Ua) 1
TSy do + —dv (2.94)

Subsequently, under the assumption that Z << h this leads to:

H nw _i(l—éua)

== _ 2.95
E v rsa cos(g) (2.95)
Similarly we derive the expression for the phase lag:
wa

Although the assumption that Z << h seems more strict, these equations allow a bottom slope
to be present in the estuary. In the following text, for reasons of convenience, we shall drop
the over-bar and simply use h to describe the tidal average depth. If the tidal average depth is
constant along the estuary we shall use hy.

2.3.6 The Scaling equation
An interesting result is obtained if we combine (2.85) and (2.93):

lv 1 v 1
rs csin(e) e sin(e)

(2.97)

which is a direct relationship between the amplitude-to-depth ratio, the Froude number and
the Wave-type number, Ng=sin(g). This very useful equation provides a relationship between
important hydraulic scales and is therefore named the “Scaling equation”. This equation is also
very useful to estimate the estuary depth on the basis of observable tidal parameters.

It is interesting to note that a simpler version of this equation is widely used in the literature,
particularly in perturbation analysis (e.g. Jay, 1991; Friedrichs and Aubrey, 1994). In perturba-
tion analysis it is customary to neglect sin(g) in (2.97). This assumes e=m/2, namely the case
of a purely progressive wave. In perturbation analysis it is implicitly assumed that the wave
behaves as a progressive wave, whereas we know that the tidal wave in an estuary is of mixed
character (see Fig. 2.6). Because ¢ is small (typically in the order of 0.3), the error made by
neglecting sin(¢) is substantial. In the author’s experience the Froude number is always substan-
tially smaller than the tidal amplitude to depth ratio. It is an illustration of how perturbation
analysis can easily introduce unnecessary errors. While (2.97) is not more complicated, it is
certainly more accurate than the equation used in perturbation analysis.

Friedrichs and Aubrey (1994) also present a version of (2.92) obtained from perturbation
analysis, but in that equation, 74, cos(¢) and (1-dyb) are missing. Disregarding cos(e) is the
same as assuming that the tidal wave behaves like a standing wave. Because ¢ is small, the error
may not seem so large, but combined with the neglect of damping and the effect of storage width,
it can result in considerable deviation from the true value; a deviation which can be avoided by
a more rigorous analytical derivation.
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2.3.7 The damping assumption

The geometry-tide relation is also a very useful tool to analyse the relation between the damp-
ing of the tidal amplitude 4, (which is the same as ) and the damping of the tidal velocity
amplitude §;. Under the condition that the tidal damping is either constant (exponential damp-
ing/amplification) or small (|6yb| << 1), we can simply derive from Eq. (2.93):

(5].1 =5U+5h_6cose =5U+5h+taneg—i=6U+A (2.98)

where dj, is relative depth gradient and A is the error made if we assume that dy = éyy. On the
basis of Eq. (2.40):
a—b
o = pa (2.99)

In long estuaries, the depth gradient and phase lag gradient are generally small and dy =~ 0y
applies. But in short estuaries, as we saw in section 1.2, there is generally a substantial depth
gradient and the velocity amplitude reduces to zero near the estuary end, while the water level
amplitude does not. Since in short estuaries the phase lag is very small (tane ~0), for short
estuaries dy =~ dy + 0y applies.

However, in the more downstream part of coastal plain estuaries, both the depth and phase
lag gradients are negligible and the tidal amplitude and tidal velocity amplitude are about equal.
Hence:

This is a useful formula because in practice, d is much easier to determine than d;.

2.4 Stokes’ drift in alluvial estuaries

It is important to point out that Stokes’ drift is not a physical phenomenon but an artefact of our
mathematical definitions. The drift phenomenon was coined by George Stokes (1819-1903) (see
for example, Longuet-Higgins (1969)). Formally, Stokes drift is defined as the difference between
the average Lagrangean and the average Eulerian velocity. But in estuaries, Stokes drift is purely
the result of observing the Eulerian velocity at a fixed point along the estuary axis. If there is
a net zero transport of water through the estuary (Q;=0), then in the Eulerian framework we
observe an average upstream velocity equal to the Stokes drift velocity. Integrated over the tidal
period, this is the Stokes drift. In a regular estuary with an average depth of about 10m, under
a semi-diurnal tide with a tidal amplitude of 1 m/s, the Stokes drift amounts to about 2 km
per tidal period. Not a negligible amount, only it is not real. It is a drift that results from the
Eulerian perspective where we continuously observe a different particle that passes our point of
observation. Heraclitus (quoted by Plato) said: “You can’t step twice into the same river; for
other waters are ever flowing on to you”. Paraphrasing Heraclitus, we can say that: ”Standing
on the shoreline, you never observe the same water particle”. However, if we observe the water
particle in the Lagrangean way, then we see how the same water mass is continuously subject
to the tidal forces of gravity and the friction exercised by the bottom shear. If the driving force
is cyclic, as the tide is, then also the movement of the particle is cyclic; and if there is no river
discharge, then the water balance requires that it returns to the same position. If there is an
average downstream discharge, then this can be superimposed on the tidal movement and the
water particle moves gradually downstream with the average velocity Qs/A. Not so within the
Eulerian framework. In the Eulerian framework, the water balance demands that the average
tidal discharge is zero (or equal to the river discharge), but because the discharge is composed
of two cyclic functions of velocity and water depth which are not in phase, the tidal average
Eulerian velocity is non-zero. This is the Stokes drift phenomenon. A real ‘Lagrangean’
water particle does not experience a Stokes drift, but Eulerian particles do. There may be a
Lagrangean drift due to wind, wave energy dissipation, or flow convergence, but at all times,
the water balance requires that such a drift is compensated by a lateral or vertical return flow.
In short, the Lagrangean tidal velocity is directly subject to conservation of mass; the Eulerian
velocity only indirectly through the discharge.
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We have seen before that the classical theory on tidal hydraulics has a preference for Eulerian
theory. The literature is dominated by the assumption that the Eulerian velocity can be described
by a standard harmonic function, and as a result, there is the suggestion that the Stokes drift
is real. We saw in Figure 2.11 that the Lagrangean and Eulerian velocities are not the same.
So if one of them is a pure sinus, then the other one is not. The Stokes drift velocity Ug is the
difference between the Lagrangean velocity V' and the Eulerian velocity U:

Us=V-U (2.101)

Hence in a Eulerian frame, Ug can be expressed as:
t
Us = / Uz, t)at 2% (z ) (2.102)

If we assume the Eulerian velocity U to be a pure harmonic, then it follows easily that:

(Us) = g (2.103)

But, as we saw from the numerical model simulation in Figure 2.11, the Eulerian velocity is
not a pure harmonic. If we assume that the Lagrangean velocity is a pure harmonic, then the
average Eulerian velocity is non-zero. In fact, we can see in Figure 2.11 that a pure sinus in the
Lagrangean framework leads to a Eulerian velocity that has a residual velocity. The reverse is
also true. If the Eulerian velocity has an average of zero, then the Lagrangean velocity should
have a residual drift, equal to the Stokes drift. A simple thought experiment tells us which of
the two is correct.

If we assume the Lagrangean velocity not to have a zero mean, then a water particle would
gradually move upstream. What is true for one particle would apply to all particles, hence a
non-zero mean Lagrangean velocity would lead to a residual upstream transport of matter. In
a closed estuary with a constant or zero inflow from upstream, this is not possible. This is in
contradiction with the water balance. Hence the Lagrangean velocity should have a zero mean
or be equal to the fresh water discharge velocity.

In the Lagrangean framework, (2.102) modifies into (2.105) below. We do this by calculating
U from V through a Taylor approximation, integrating backwards over S:

U= V+—( S)+16U( 8)? +.. (2.104)

In a first order approximation it then follows that:

Us = s‘;—U = 2 (1 cos(wt) (- %wvcos (wt) + Syusin (wt)) (2.105)

neglecting the damping for the time being, the time average residual velocity is:

T 27
v? v? 5
(Us) = s / (1 — cos(wt)) (—cos (wt))dt = i / (cos? (wt) — cos(wt))dwt (2.106)
0 0
The integral of the first term is 7 and of the second is zero, hence:
v? v?
(Us) = T % (2.107)

This is the same result as in (2.103). The difference is that in classical literature it is assumed that
the Lagrangean velocity equals this Stokes drift, whereas in alluvial estuaries it is the Eulerian
average velocity that is equal and opposed to the Stokes drift. Hence:

v2

U) =~ (Us) = =5

(2.108)
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It follows from this equation that if the wave celerity goes to infinity (standing wave) that the
Stokes drift is zero. This is because a standing wave is synchronous whereby (in an ideal estuary
with zero damping) the longitudinal velocity gradient is zero.

Of course we have to take the damping/amplification into account, and also (e.g. according
to Zimmerman, 1979) it is wise to consider the second order term in the implicit Taylor ap-
proximation of (2.104). The figures below illustrate the effect of damping/amplification on the
Stokes drift, and also the importance of using the second order term for higher accuracy.

Figure 2.13 shows the Eulerian and Lagrangean velocities and displacements for the case
where v=1.0 m/s, ¢=10 m/s, and T'=44400 s. Figure 2.14 shows the Stokes residual velocity and
Stokes drift varying over the tidal period. The second order term has only a slight influence but
the effect of damping or amplification can be significant.
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Figure 2.13: The Eulerian and Lagrangean velocities and displacements.

In conclusion, the Stokes drift is not a real phenomenon, as is often thought, but rather a
mathematical artefact of the Eulerian reference frame. In open systems, however, there may be
a throughflow. One can imagine this to happen in an estuary with two branches divided by an
island. If the conditions for a residual flow (due to wind, gravitational effects, channel geometry,
Coriolis effect, or wave energy dissipation) are better in one of the two channels, then there
can be a residual upstream flow in that channel, which is compensated by a return flow in the
other. But the drift that is caused by these pressures or shear stresses are Lagrangean drifts and
not Stokes drifts. The forces act on the moving water particle that moves in response to the
Newton’s second law of motion. If there is a Lagrangean drift, then this may also manifest itself
in a Eulerian drift - the Stokes drift is nothing more than the difference between the two. It is
not a phenomenon in itself.
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Figure 2.14: The Stokes residual velocity and Stokes drift varying over the tidal period.

2.5 The effect of river discharge on the Lagrangean water
balance, the phase lag and the Geometry-Tide relation

The river discharge in the Lagrangean water balance

In the Lagrangean reference frame, the river discharge (pointing in downstream direction) comes
in through the velocity with which the water moves:

V = vsin (wt) — % = vsin (wt) — Uy = v (sin (wt) — ¢) (2.109)

where Uy = Q/A and we define ¢ = Uy /v as the relative influence of the river discharge on the
tidal flow. The Lagrangean derivative reads:

dv Uy
o = wueos (wt) — 7V (2.110)

As a result the distance travelled by the water particle is:
S = 5 (1 — cos (wt)) — Uyt (2.111)
In a Eulerian reference frame, the Eulerian velocity is:
U=wsin(§) —Us=v [sin (wt— %(1—10—5)) —cp] (2.112)

Partial derivation of this equation results in the following expression:

ou _ dyusin (€) + veos (€) g—i _U

e (2.113)
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where:

013 . w Ust
9r - ¢ {1 -+ o oS 5uUft} (2.114)

In this derivative the last term is very small compared to the second since dya < 1, and also
small compared to the other damping term if Uy < v. We can see in (2.114) that when ¢
approaches unity, the two damping terms more or less double the damping effect on 9¢/dz,
because S =~ Vt. In the following we disregard the last term in 9¢/dz, assuming ¢ < 1, and
explore what happens if it becomes more prominent. Combining (2.113) with the Lagrangean
water balance where z = S and £ = wt yields:

%3

rsdh _ (1-dub) (wt)__cos(wt) (2.115)

hvdt b
Substitution of (2.109), (2.110) and (2.114) yields:

Thsjil M(V-}-U)-{- ( (I—JUS)+Uf—(1—5US)+U;t(ii‘t/+Uf -Uy— )

(2.116)
The last term is a factor Ust/a smaller than the other terms containing Uy, so it can be disre-
garded. Integration, from ¢ s until £, making use of the exponential shape of the cross-section
yields:

rsln h =(1_6"b)s 1+U’t +V 1+Uft — 8y SF K+E—<p£ (2.117)
hrws b S c v 8 2a

At tgws=T/2, this yields:

rsln (h"“’s) _a _b‘s"b)E (1 +<p72—r) — 6y EF (1 - (p2E—a) ~ 1= 00h) g (1 +om ) (2.118)

hrws b

The last term is generally very small compared to the first, because Féyb <« 1, and it is F
times smaller than the damping in the first term. So the fresh water discharge impacts on the
water level variation essentially through the impact is has on the distance travelled by the water
particle S(1 + Ust/S). We can also see that the water depth at HWS is increased as a result of
the river discharge if ¢ approaches unity.

If we would have made use of (2.27) instead of (2.26), then we could have replaced the width
convergence length by the cross-sectional convergence length a.

The river discharge in the phase lag equation

The river discharge affects both the timing of HW and HWS, and similarly the timing of LW
and LWS. We'll first look at the timing of HW and LW, and then at the timing of the slacks.
The phase lag between HW and HWS will differ from the original phase lag that is unaffected
by discharge. The original phase lag was defined as ¢, while the new phase lags will be indicated

by: Eyw(go) = w(tHWS - tHW) and ELW(‘P) = w(ths - th) What we may expect is that,
in line with Fig. 1.5, when Uy = v(p =~ 1) the HW phase lag reduces while the LW phase lag
increases until the slacks coincide.

Influence of the river discharge on the timing of HW and LW
Considering the water balance of (2.114) at HW or LW, where dh=0, we find:

— (1 - §yb)sin (wt) = b <°-’ © Uf L -auv (1 — cos (wt))) cos (wt) (2.119)
c
and considering a = b and F = v/e:
— (1 - dyd) tan (wt) = ‘%b + F (pwt — b (1 — cos (wt))) (2.120)
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Let’s first consider the situation of HW, where applies: wtpyw = m — egw , cos(wt) = —1 .
Assuming egw < 7 and subsequently cos (egw) ~1 and t ~ T'/2, we find:

(1 — dub) tan (exrw) = ‘%b +F (o — 200b) (2.121)

In order to study the relative importance of these terms we use the dimensionless numbers of
Savenije et al. (2008), which will be further elaborated in the next chapter: v = ¢p/(wb), A = ¢o/c,
d = dyco/w:

(1 - %) tan (egw) = 3 +F (gmr - 2%) (2.122)

A special case is the situation of the ideal estuary where there is no damping and the wave
celerity is ¢o (6 = 0, A = 1). In that case:

1
tan (egw,r) = ; + For (2.123)

Knowing that the order of magnitude of v is 1, but the Froude number is in the order 0.1 or
smaller, we can see that the impact of the river discharge is always small, unless  is small, which
is the case in prismatic channels.

The effect of the river discharge on the timing of HW is that it tends to delay the time of
HW. The effect of damping is not clear. In the left hand member (the denominator) the damping
reduces the delay, while in the second term it increases the delay.

Similarly for the timing of LW applies that wt,w = —epw and cos (wt) = 1. We again
assume that e < 7 and hence: cos (eLw) =~ 1, t =~ T. It follows that:

(1 — dub) tan (ew) = ‘%” +2Fpr (2.124)

Using the dimensionless numbers we rewrite:

(1 - %) tan (eLw) = :\7 +2Fpm (2.125)

In the LW case there is no damping term in the right hand member, and the effect of the river
discharge is doubled. Damping reduces the time of occurrence of LW through the denominator.

We can also consider the case of the ideal estuary where there is no damping (§ = 0,A = 1),
hence:

1
tan (ELW.I) = ; + 2F<P7I' (2126)

So the river discharge delays the timing of both HW and LW, with LW delayed more. Damping
reduces this delay. In strongly tapering funnel-shaped estuaries, this effect is minor, but in near
prismatic estuaries the effect can be significant.

Influence of the river discharge on the timing of HWS and LWS

A much stronger effect on the phase lag between HW and HWS is provided by the shift in the
occurrence of slack Ae. Taking a fresh water discharge into account, the timing of the HWS and
LWS is shifted:

wtpws =T+ Aegws =T — arcsin(cp) (2.127)

wtrws = Aepws = aresin(yp) (2.128)

Hence the phase lag between HWS and HW and between LWS and LW in the case of a fresh
water discharge are:

w(tows — tow) = eLw () = arcsin(y) + arctan (ﬁ (1 + 2}F<p1r)) (2.129)

A )

Overall we see that the effect of the fresh water discharge on the occurrence of HW and LW is
very minor (unless in prismatic estuaries), but that the effect of river discharge on the occurrence
of HWS and LWS is direct through arcsin(y), as depicted in Fig. 1.5.
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The river discharge in the geometry-tide relation

Using the water balance of (2.122) and neglecting the terms with §;SF, it follows:

rsln (h h ) _4a _b‘s"b) (S+Ust) + v (1 + @) (2.131)
LWS c a

We can substitute the conditions for HW and for LW in this equation, obtaining two equations,
one for HW and one for LW. Subtraction of these equations yields:

rsln haw ) _ (1= 9ub) Ecos(g) + 2Fsin(e) | 1 + ur (2.132)
hrw b 2a

Assuming that a ~ b, and using the same operations as we used to derive (2.91), whereby we
use the expression for tan (egw) above, it follows that the geometry tide relation is virtually
unaffected by the fresh water discharge. The equation we obtain is the same as (2.91):

haw) _ (1-90ub) E
rsln (hLW ) N heos(e) (2.133)

Influence of river discharge on the scaling equation

The average phase lag is not influenced by river discharge, since (2.128) and (2.130) are almost
symmetrical. Hence the scaling equation is also almost unaffected by the fresh water discharge:
v 1
c

<) (2.134)

LS

h
In summary, the influence of the river discharge on the Lagrangean water balance is minor. The
only apparent effect is the shift in the occurrence of the slacks when the river discharge becomes
prominent (¢ approaching unity).

2.6 Concluding remarks

In this chapter we have derived three important analytical equations: the phase lag equation
(2.85), the geometry-tide relation (2.93) and the scaling equation (2.97). In these equations
the phase lag acts as a prominent variable. In alluvial estuaries it can vary over the full range
between 0 and 7/2, between a standing and a progressive wave, depending essentially on the
degree of width convergence in the estuary. In classical analytical solutions people either assumed
a standing or a progressive wave and, as a result, missed an essential characteristic of alluvial
estuaries.

These three new equations, derived from the water balance equation, still contain four un-
knowns: the velocity amplitude, the water level amplitude, the wave celerity and the phase lag.
Moreover, the last of these three equations contains no new information, being a combination
of the previous two. So we have two equations with four unknowns. Although these are very
useful equations to study the relationships between tidal flow parameters and estuary geometry,
we still need two more analytical equations to solve the entire system. In the following chapter
we shall do just that, and derive expressions for tidal damping (the derivative of the water level
amplitude) and wave propagation (the wave celerity). We shall then have enough analytical
equations to solve the St. Venant equations.
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Chapter 3

TIDAL DYNAMICS

This chapter covers the remaining theory of tidal hydraulics, specifically dealing with equations
that describe the effect of tidal damping and wave propagation.

In the previous chapter we derived relations between the hydraulic parameters of tidal flow
and estuary geometry, essentially by analysing the conservation of mass equation in conjunc-
tion with the exponential shape of alluvial estuaries. In this chapter we shall derive analytical
equations for tidal damping/amplification and for wave celerity by combining the conservation of
mass and momentum equations. The damping equation is derived through the envelope method,
while the celerity equation uses the methods of characteristics. We use analytical derivation and
not scaling or perturbation analysis, as is often used. Scaling is useful for identifying the main
mechanisms at play and for assessing orders of magnitude, but, as a tool for derivation, it does
not always result in correct equations, as will be demonstrated. The analytical equations derived
in this chapter are more general versions - or refinements - of well-known (classical) equations,
such as Green’s law and other rules of thumb derived by perturbation analysis. Most of these
classical equations are only correct for frictionless channels or for channels with a constant to-
pography, or for either progressive or standing waves. The general equations derived in this
book apply to the full range of tidal waves (with a phase lag varying between 0 and 7/2) and
the natural topographies of alluvial estuaries. Moreover, we shall show that the set of equations
can be reduced to 4 dimensionless relationships that can be solved explicitly.

3.1 Tidal movement and amplification

3.1.1 Why is the tidal wave amplified or damped?

We saw in the previous section that tidal amplification (or damping) has an effect on the water
balance equation, and therefore on the ratio of E/H and (importantly) on the wave celerity.
But what causes a tidal wave to be amplified or damped? Until now we have only analysed
the mass balance equation, although the assumed Lagrangean velocity function is a solution of
both St. Venant equations. To understand the reasons for tidal damping we have to look at the
momentum balance equation.

Early authors like Langbein (1963) and Dyer (1973) suggested that tidal amplification is the
result of the imbalance between topographic convergence and friction. If convergence is stronger
than friction, the wave is amplified; if friction is stronger than convergence, the wave is damped;
if they are equally strong, the tidal range is constant. This was indeed demonstrated by Jay
(1991), who used perturbation theory, and by Savenije (1998) who combined the Lagrangean
equations of the previous section with the momentum balance equation. In the following section
we shall derive a relation for tidal amplification and damping.

3.1.2 Derivation of the tidal damping equation by the envelope method

We can rearrange (2.80) as follows:
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dvv. e¢dh <V cVdu

a@ Shdt b v

We shall now make use of (2.100), stating that the damping of the velocity amplitude is

almost equal to the damping of the tidal range (including an error term A). This error term is

zero when the phase lag £ and the damping/amplification are constant 4, (implying exponential

damping or no damping). This assumption is valid in long estuaries that gradually transform

into a river. In short and closed estuaries this assumption may not be correct, but we’ll see

further on in Section 3.4 that in short estuaries we may use a simple linearised equation that
performs well under those conditions. Making use of this assumption, (3.1) becomes:

(3.1)

Ha 2

g — — —

dv cdh ¢V 1 dH
X h @ b cV < ) (3.2)
Next we combine (3.2) with the Lagrangean momentum balance equation (2.22). Written in a

Lagrangean reference frame it reads:

v dh VIV
4 95, TIDL— L)+ 95 =

Combination of (3.2) and (3.3), and making use of the Lagrangean relationship V = dv/d¢t,
yields:

0 (3.3)

Sghdz ¢ \b Hdax or VT T crp
To derive an explicit relation for the tidal damping, we shall condition this differential equation
for the occurrence of HW and LW. We shall then obtain two differential equations describing the
envelopes of the water levels at HW and LW. At HW and LW the special condition applies that

Oh/dt = 0, and hence:

0 (3.4)

dh

dh _ 0Oh
dz

= — (3.5)
HW,LW oz

HW,LW

Using this relation we can write (3.4) completely in Lagrangean derivatives for the conditions of
HW and LW. Moreover, since the tidal range H is the difference between hyw and hpw, the
Lagrangean gradient of the tidal range is defined by:

dhgw dhpw dH
dz  dz dz (36)
And similarly because the sum of the two depth is twice the average depth (for a symmetrical

wave), which we may assume to be correct if the tidal amplitude to depth ratio is small:

dhagw | dhrw dh
dx dz ~2£ (3.7)

Finally the following conditions apply for HW and LW if the tidal amplitude to depth ratio is
not too large:

hiw ~h—n (3.9)

where n = H/2. Moreover, if the velocity has a sinus shape:

VHW =uvsin ¢ (310)

Viw = —vsine (3.11)
Combination of (3.4), (3.5), (3.8) and (3.10) yields for the condition of HW:
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rscusine dhgw  cusine (1 1dn A) . dhyw . (vsine) - L+ (3.12)

gth+n) dz 9 dz C*(h+n)
This is the differential equation that describes the upper envelope of all water levels in the estuary,

because no water level can rise above the point of HW. Similarly for the condition of LW we find
the envelope for LW, which is the lower boundary of all the water levels in the estuary:

—rgevsine dhpw  cusine <l _1ldg +A> dhrw (vsine )? = I, +1, (3.13)

g(h—n) dz g dz C2(h—n)

Subtraction of these two envelopes yields:

rgcvsine (dhgw h dhiw h cusine (b h dn ) (vsme)
— — = —— - +hA =0
2h ( dz (h+n) dz (h—n)) h (b nda +f
(3.14)

A W) Q) e

where f’ is the adjusted friction factor taking account of the friction being larger at LW than at
HW. One could also determine this friction factor on the basis of Strickler’s formula. It would

then read:
-1
r_ 9, (133 2 .
I=tenm \1 -5 (8.16)

The coefficient 1.33 in this equation follows from a Taylor series expansion of (h + 7)'33 ~
h133(1 + 1.33n/h), if n < h. Due to the factor 1.33, this equation only makes sense as long as
n/h < 0.7 and may only be applied for smaller amplitude to depth ratios. We can see that if the
tidal amplitude to depth ratio is small f’' =~ f = g/C2.

The part between brackets in the first term of (3.14) can be replaced by twice the residual
water level slope 2/, defined in (3.7), provided n/h < 1. Elaboration yields:

with:

h dn agn B h ,Using %
ndz (1 cvsins) b e TSgt RO (3.17)

The width and the depth convergence in this equation can be combined into the cross-sectional
convergence. For small values of rg this leads to the simplified equation:

h.d h i =
n(1+i):__f,vsine+hA

ndz cusing a (3.18)

Regarding the term hA. It is zero in a near ideal estuary where: a) there is no bottom slope,
b) the tide is modestly damped/amplified or d;; is constant, and c¢) the phase lag is constant. In
long coastal plain estuaries this is generally an acceptable assumption. If there is amplification
or damping in a coastal plain estuary, then this is generally modest. In that case the term
hA is non-zero, but since the gradient of the tidal velocity amplitude is small compared to the
convergence length (J,b < 0.1), hA is still much smaller than h/a. In short (amplified) estuaries,
there may be a bottom gradient, a gradient in the phase lag (gradually moving towards a standing
wave) and a gradient in the tidal velocity amplitude (gradually reducing to zero). So in short
estuaries the hA term may become prominent and may need to be accounted for. In coastal
plain estuaries, however, particularly in the downstream part, this term may be disregarded.

Hence, the analytical solution of the St. Venant’s equations yields:

() =
ndz cusine a he

(3.19)
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This is a differential equation describing the damping of the tidal amplitude as a function of the
estuary shape, the friction and the residual slope. The subtraction of the two envelopes for HW
and LW resulted in a differential equation that describes the tidal range. It will prove to be a
very useful equation to elaborate further. In the following text, for convenience sake, we shall
drop the over-bar for the average depth and h will stand for the tidal average depth.

It is interesting to check the origin of the terms in this equation. The first term on the right
hand side obviously comes from the convergence term in the continuity equation. The second
term stems from the friction term in the momentum balance equation. On the left hand side, it
is less obvious. The 1 stems from the last term in (3.1) and is the term that determines the effect
of tidal damping on the mass balance equation; the second term between brackets stems from
the depth gradient in the momentum balance equation (clearly an important term). Scaling (see
below) shows that this term is indeed larger than 1.

This equation is a general version of Green’s law, a rule of thumb often quoted. Green
(1837) assumed that the amount of energy in a progressive tidal wave (E = 0.5pgn?>BcT’ ) would
remain constant under frictionless flow as it travels up a converging estuary. If we use the
classical equation for wave propagation (¢ = gh), this leads to the tidal range being inversely
proportional to the square root of the width and the 0.25th power of the depth. In an ideal
estuary with constant depth, it implies that 5 = 1/(2b). We shall see further on in equation
(3.64) that zero friction (f’ = 0) indeed leads to Green’s law. So Green’s law is a special case of
(3.19), and (3.19) is a general version of Green’s law.

From (3.19), it can be seen that in an ideal estuary where there is no tidal damping or
amplification:

1_ usine _ R (3.20)

a he c

This is a similar result as in (2.57), which was the condition for an ideal estuary to occur. The
resistance term R’/c is also presented in Table 2.2. We can indeed verify the earlier remark that
there is tidal amplification if 1/a > R'/c (see Figure 3.1). We can also verify that since a, f, h
and v are constant along the estuary, the wave celerity and sin(g) are proportional. Since sin(e)
indicates the type of tidal wave (it equals zero for a standing wave and 1 for a progressive wave)
it is called the Wave-type number N (Savenije, 1998). In alluvial estuaries, where the tidal
wave is of a mixed character, the Wave-type number is between 0 and 1. Since it has often been
observed that the phase lag is constant along a near ideal estuary, the wave celerity also is, which
can indeed be seen in alluvial estuaries, at least for considerable stretches where convergence and
depth are constant.

Scaling the tidal damping equation

By scaling (3.19), we can study the behaviour of the damping equation. Therefore we introduce
three parameters: the dimensionless tidal range y, the dimensionless velocity number pu, and the
dimensionless wave celerity A, which have been scaled using 7y as the tidal amplitude at z=0,
and ¢ as the classical wave celerity (see (3.27)):

n
= — 3.21
v= (3.21)

h
=2 (3.22)

TsCon

o
A=— 3.23
. (3.23)

It then follows from scaling (2.100) that:

sine = pA (3.24)

And hence, the second term of the left hand part of (3.19) becomes:
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Figure 3.1: Computed and observed tidal damping and amplification (§5) in the estuaries of
Table 2.2
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Substitution of these dimensionless numbers in (3.19) leads to:
dy (1+4*\ _y .m0 o
a < u2 = E - f’}-l—yZSlan (326)

Since p is O(1), we can see that the part between brackets is a number in the order of 2. Most
studies in the literature assume that damping of a tidal wave is exponential (e.g., Jay, 1991;
Friedrichs and Aubrey, 1994; Prandle, 2003; van Rijn, 2011). This would be the case if the
second term on the right hand was linear in y and if all other factors were constant . But, as
we can see, the second term on the right hand side is quadratic in y. Moreover, p and sine are
not necessarily constant with z. As a result, it is not at all obvious that exponential damping or
amplification may be assumed.

To study this relationship further, we first need to derive an analytical equation for the wave
celerity (being part of sine). We shall do this in the following section and then continue to look
at the asymptotic behaviour of the damping equation.

3.2 Tidal wave propagation

Observations in estuaries indicate that an amplified tidal wave moves considerably faster than is
indicated by the classical equation for wave propagation. Similarly, the celerity of propagation
is lower if the tidal wave is damped. This phenomenon is clearly observed in the Schelde estuary

INote that the quadratic of y and of sine stems from the quadratic velocity in the friction term. If the friction
is linearized (e.g. by Lorentz’s linearization), then the second part of (3.26) becomes linear in both y and sine.
Since this is how most of the classical literature linearizes the St. Venant equations, the classical literature uses
exponential damping
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(located in the Netherlands and Belgium) and in the Incomati estuary in Mozambique. In the
Incomati, the tidal wave is damped throughout and the celerity of the wave is lower as expected.
In the Schelde the tidal range increases from the estuary mouth as far as the city of Antwerp,
after which it decreases until it reaches Gent. In harmony with the amplification and the damping
the tidal wave moves faster than expected in the downstream reach and slower in the upstream
reach. This section presents an analytical expression for the celerity of the tidal wave that
takes into account the effect of tidal damping as an expansion of the classical equation for tidal
wave propagation. The equation is successfully applied to observations in the Schelde and the
Incomati. The equation, developed by Savenije and Veling (2005), is a fully analytical solution
of the St. Venant equations and appears to perform better than methods developed by earlier
authors.

3.2.1 The relation between tidal damping and wave celerity

The classical formula for wave propagation is widely used to describe the propagation of a tidal
wave in estuaries. This equation has been derived for the propagation of a small amplitude gravity
wave in a channel of constant cross-section with no friction or bottom slope (as in Section 2.2.2):

= igh (3.27)
rs
where ¢ is the classical celerity of a progressive wave, and rg is the storage width ratio defined
earlier.

The fact that this equation is so widely used in estuaries is surprising since the conditions
for its derivation (progressive wave with constant cross-section and no friction) do not apply in
alluvial estuaries where the cross-section varies exponentially along the estuary axis and friction
is clearly not negligible. It will be demonstrated that under special circumstances the classical
wave equation also describes the propagation of a tidal wave in a converging channel, with a phase
lag € between high water (HW) and high water slack (HWS). This is the case when the wave does
not gain or lose amplitude as it travels upstream and the energy per unit width that is present in
the wave is constant. When the energy gain from convergence of the banks as the wave travels
upstream is compensated by the energy lost by friction, we speak of an “ideal estuary” (Pillsbury,
1939). Ideal estuaries have constant depth, exponentially varying width, constant wave celerity
and constant phase lag between water level and velocity (see Section 2.2.2). The exponential
geometry being the natural shape of an estuary, it has been used widely to derive analytical
equations for tidal wave propagation (see e.g., Hunt, 1964; Harleman, 1966; Jay, 1991; Savenije,
1992a; Friedrichs and Aubrey, 1994; Lanzoni and Seminara, 1998, 2002; Savenije and Veling,
2005). Although in an ideal estuary there is no tidal damping or amplification, in real estuaries
there generally is, albeit modest. As a result, the length scale of tidal damping is generally
large in relation to the length scale of bank convergence (see e.g., Friedrichs and Aubrey, 1994;
Savenije, 1992a).

There appears to be a close relation between tidal damping (or amplification) and wave
celerity. Tidal damping and tidal wave celerity both react to the imbalance between convergence
and friction. In estuaries where tidal damping or amplification is apparent (e.g. the Thames, the
Schelde or the Incomati), one can observe a prominent deviation from the classical wave celerity
co. If the wave is amplified, such as in the lower parts of the Thames and the Schelde, then the
wave moves considerably faster than the celerity computed by (3.27). When the wave is damped,
as is the case in the Incomati and in the upper parts of the Thames and Schelde, then the wave
travels considerably slower.

Observations of tidal wave celerity under tidal damping and amplification are presented in
Figure 3.2 for the Schelde in The Netherlands and in Figure 3.8 for the Incomati in Mozambique.
These observations are combined with a drawn line representing the classical equation for wave
propagation of (3.27). Figure 3.7 shows observations at high water (HW) and low water (LW) in
the Schelde and Figure 3.8 observations at high water slack (HWS) and low water slack (LWS)
in the Incomati. It can be seen clearly that in an amplified estuary (the lower Schelde) the travel
time of the wave is much shorter than the travel time computed by (3.27) (about half) and that
the travel time is substantially larger in a damped estuary (the upper Schelde and the Incomati).
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Figure 3.2: Observed propagation of the tidal wave at HW and LW on 21 June 1995 in the
Schelde, compared to the propagation computed with the classical equation (Equation (3.27)).
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Figure 3.3: Observed propagation of the tidal wave at HWS and LWS on 23 June 1993 in the
Incomati, compared to the propagation computed with the classical equation (Equation (3.27)).
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To date not many efforts have been made to derive analytical equations for wave propagation
in funnel shape estuaries under the influence of tidal damping or amplification. Ponce and Si-
mons (1977) remarked that: “a coherent theory that accounts for celerity as well as attenuation
characteristics has yet to be formulated”. To date, the approach that made the most substan-
tial contribution to solving this problem is the method of Friedrichs and Aubrey (1994), who
addressed it by scaling the governing equations and subsequently solving the first and second
order approximations analytically. This approach, called the perturbation approach, reduces the
differential equation by neglecting higher order terms. In doing so, the effect of tidal damping
generally disappears from the equation. Only in the second order solution of Friedrichs and
Aubrey (1994) are the combined effects of tidal damping and wave propagation present. The
equations obtained were fitted to observations in the Thames, Tamar and Delaware by calibra-
tion. Although the method was based on the linearised St. Venant equations, it was able to
demonstrate a combined effect of damping/amplification and wave celerity by retaining an ex-
ponentially decaying or increasing tidal amplitude (although we know now that tidal damping
or amplification is not exponential).

In this Section the method of characteristics (see e.g., Dronkers, 1964; Whitham, 1974) is
used to derive an analytical equation for the combined effect of damping and wave celerity.
This equation allows the computation of the celerity of propagation under damped or amplified
conditions. The equation obtained is not very complicated and is an extension of the classical
formula in which, besides the rate of amplification (or damping) the phase lag £ between high
water and high water slack is essential. Conditions for these derivations are that the tidal
amplitude to depth ratio and the Froude number are considerably smaller than unity and that
the velocity of river discharge is small compared to the tidal velocity. In the lower part of alluvial
estuaries this situation is the rule rather than the exception. Further down, in Section 3.5, we
shall analyse the effect of river discharge on wave celerity.

3.2.2 Derivation of the celerity equation

Rewriting the St. Venant equations (2.22 and 2.27) and making use of the exponential conver-
gence of the cross-section (Eq.2.38), gives us:

8z U dZ Uh _

rsa—i-ha—m-i-Ua—x T 0 (3.28)
oU _dU  Oh Ulu| _

where the parameters all have been defined earlier.

The main unknown parameters to be determined in the analysis, as functions of time and
space, are the water depth h and the water velocity U. Both are considered periodic functions
® and ¥ with a tidal period 7" and an angular velocity w = 27/T.

Similar to the assumptions made on the character of the tidal wave in (2.48)-(2.50), the
following periodic functions can be applied for velocity and depth in a Eulerian reference frame:

U =v(z)®(£ —¢) =~ —v(z)sin(€ — ) (3.30)
h=Z+h=n(z)¥(€) + h ~ n(z)cos(&) + h (3.31)
e=w(t- %) +& (3.32)

The difference with (2.48)-(2.50) is that here we allow the velocity amplitude v(z) and is the tidal
amplitude 7(z) to vary as a function of z. Although defined earlier, here we recall that h is the
tidal average depth, zi is the dimensionless argument of the periodic function, ¢ is the celerity of
the tidal wave, and ¢ is the phase lag between high water (HW) and high water slack (HWS), or
between low water (LW) and low water slack (LWS). This phase lag may be assumed constant
along the estuary axis if the tidal amplitude to depth ratio and ¢ are small. The functions
® and V¥ are harmonics with unit amplitude, similar to sinusoids, but which do not have to be
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sinusoids. In fact, they may contain higher order harmonics or be distorted. Note that in Section
2.4, when discussing Stokes’ drift, we argued that the Eulerian harmonics are distorted while the
Lagrangean harmonics are not. The approach followed here does not contradict this argument.
The following derivation applies equally well to a distorted tidal wave. There are, however, a
number of assumptions that have to be made. For the equations (3.30-3.32) to be correct, the
following conditions should be met:

Assumptions made for the derivation:

1) The tidal velocity U in (3.30) should not be influenced by the river discharge Q7. Hence,v >
Qr/A.

2) The amplitude of the tidal water level variation is smaller than the depth of flow. Hence,
n < h.

3) The Froude number is small: v < c.
4) The phase lag € is constant along the estuary.

5) 5) The wave celerity is constant along the estuary, or at least along a certain reach of the
estuary, or d¢/dz = 0.

6) 6) The scaled tidal wave (¥) does not significantly change shape as it travels upstream.

The first assumption is very common in tidal hydraulics and quite acceptable in the downstream
part of alluvial estuaries. We shall evaluate the limits of this assumption in Section 3.5. The
second is an important assumption made throughout this book. It is only valid in deep estuaries
or estuaries with a very small amplitude. In a shallow estuary such as the Incomati this assump-
tion is not valid near the estuary mouth, although it is further upstream. Assumption 3 is linked
to the second assumption; we saw this in (2.97). The Froude number is always smaller than the
amplitude to depth ratio by a factor rgsin(¢). Assumption 4 corresponds to the theory of the
ideal estuary, which in alluvial estuaries is a good approximation of reality. However, we know
that if the tidal amplitude to depth ratio is large, or if the river discharge becomes dominant
over the tidal flow, that this assumption is no longer valid. The fifth assumption is connected
to the previous assumption. It is crucial for the derivations made. A constant wave celerity is
in agreement with the theory of the ideal estuary, but in real estuaries, the celerity may show a
trend. Often the solution is to consider different reaches where the celerity may be considered a
constant. We shall check the validity of this assumption in Section 3.2.3 for the estuaries studied.
Assumption 6, finally, is the methodological assumption. This assumption implies that higher
order effects are negligible, but it is less restrictive than the assumption made for the derivation
of the classical equation. Assumption 6 is acceptable as long as assumptions 1-3 are valid, and
therefore it is not really an additional assumption.

If we look at Figure 3.4, we see the different stages of the tidal wave as it travels up the
Schelde estuary. We see that the wave is first amplified and subsequently damped. We also see
that it is gradually deformed by over-tides and secondary effects, particularly by the fact that
friction is higher during LW and less during HW. Overall, however, the scaled wave, divided
by its tidal range, retains its shape represented by the periodic function ¥. When applying
the analytical theory that assumes the wave celerity to be constant, the practical solution is to
sub-divide the estuary in reaches of limited length where a constant celerity may be assumed
(see Toffolon and Savenije, 2011).

The following partial derivatives can be derived for the argument of the harmonic functions:

o€ _

o = (3.33)
a
a—i --= (3.34)

The average water depth gradient can be found by averaging (3.29) over time. It leads to a
residual depth gradient I consisting of three terms, the density gradient, the bottom slope and
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Figure 3.4: Observed tidal waves at different points along the Schelde estuary on 23 June 2001.

the residual friction slope Iy. The latter is also affected by river discharge, as we shall see in
Section 3.5. Hence:

dh
a—IR—Ir_Ib‘*'If (3.35)

Subsequently, the following partial derivatives of velocity and depth can be written:

U o€

i UQ'E = vwd’ (3.36)

Z—Z - v@’g—i + @% = —%w‘b’ + v8,® (3.37)

2 % o (3.38)
g—::é;—f-l—%=7]\Il,g—i+\1’g—z+13=—Tl%‘l’l+776H‘I’+IR (3.39)

where 6y and dp are the tidal damping rate for the tidal velocity amplitude and the tidal range,
which were defined earlier in (2.58) and (2.72), respectively. Note that for these derivatives it is
not necessary to assume that the periodic functions are simple harmonics.

Essential for further derivation is the assumption that the wave may be amplified or damped,
but that the scaled tidal wave (V) is not deformed, as long as the observer travels along a
characteristic at the wave celerity (U is constant with time if £ is constant with time, implying
that dz/dt = ¢). As we can see from Figure 3.4, showing the propagation of tidal waves in
the Schelde estuary, the tide has a higher order My component resulting from the non-linear
resistance term. The shape of the scaled tidal wave, however, remains similar as the wave travels
upstream.

Hence, for an observer travelling at the celerity of the tidal wave:
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dV(z,t) 0¥ 0V _ 9V a\pa.gz\p,<6£ 3€)=0 (3.40)

dt ot "or  otot ot or ot or

The crux of the method is that application of (3.40) to the combined Saint Venant equations
implies that the sum of all terms containing ¥’ should be zero. These terms should be found in
a linear combination of the two equations. Thus, the equation of continuity (3.28) is multiplied
by a constant factor m and added to the equation of motion (3.29), after which the sum of all
terms containing ¥’ are equated to zero. Such a method is more often used to determine the
celerity of propagation, for example by Sobey (2001), who applied it to a channel of constant
cross-section and disregarded the effect of tidal damping. Our approach generates more terms.

To enhance insight into the terms, the St. Venant equations are represented in Table 3.1 in a
format where each column lists the coefficients of the equations belonging to the variables ¥’, ®’,
¥ and @ for each term of the equations. In this Table there are a number of cells that contain
non-linear terms. These terms could also have been placed in another column. The reason why
certain columns are chosen is to provide a logical overview. The position of these terms is not
affecting the further analysis. What is essential for the following analysis is to see which terms
belong to W',

Table 3.1: Representation of the terms of the St. Venant equations as functions of ¥’, ', ¥ and
.

term v’ P’ v (] constant
T % TsNW
_Uh __vh
a a

P
haL —hu +hvéy
Uz —-U¥n Unéy

BB—({ vw

U
U U +Uvsy
9ok —g%n gndu 9lr
—9lr —9Ir
fUlU folU

h h

The combined equation can be split into two parts: the equation where the sum of the
coefficients of the terms containing ¥’ is zero (corresponding to (3.40)), and the equation where
the sum of the remaining terms is zero. The first equation yields:

g
m= ———— 3.41
(ors —0) (3.41)
where m is the multiplication factor for the equation of continuity.
The second equation reads:
m {—h%@' —vh (% - 6,,) D+ v® (N + IR)}-i-vw (1 — %) &' +gndp U+ fv’lU| +Uvé, | =0
(3.42)

Substitution of m and rearrangement yields:
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14+ C.+ Dy + D5
1 — (Re + D1 + D4)(c/(c—U))

with F,.(®, ¥) being the damping/amplification function of the celerity, consisting of the following
terms:

(ers=U)(e—-U)=

= ghF,(®,) (3.43)

Pc 1
dwa
@ f|U]
d'w h

Ce=

R.=-

D, =-

1)
<I>’vwn "

dc
Dy =——4,
2 d'w

dc
D3 = ——q)lhwn\I’(SH

P
QI
These terms are all functions of U and h, and hence of time and space. Here C. is the term that
determines the acceleration of the wave due to the convergence of the banks. S, determines the
influence of the residual slope. R, determines the deceleration due to friction and the D; terms
(i =1, ..., 4) contain the effect of tidal amplification or damping. The terms are defined in such
a way that if they are positive, they cause the wave to move faster. If they are negative they slow
down the propagation of the wave. Because in alluvial estuaries the Froude number (F' = U/c)
is much smaller than unity: |D4| < |D2| and |D3 < |D1| . As a result, D4 and D3 can generally
be disregarded, but we retain them here.

D4 = v(1>6

Airy’s Equation

Besides that Fi.(®, ¥) is a function of Uand h, equation (3.43) contains the flow velocity and the
depth explicitly. This dependency on U and h can be simplified using an adjusted Airy equation.
Airy (1845), quoted by (Lamb, 1932, art.175), presented the following equation for a frictionless
undamped progressive wave (sine = 7/2) in a prismatic channel with no bottom slope:

c= (1 + ;’Z) (3.44)

where ¢; is the classical celerity of the tidal wave at mean depth. In our case, where there is
friction, tidal damping and a strong topography, this equation is different. For a small Froude
number, (3.43) can be modified as:

(c—v)* =722 (1 + %) F (®,V) (3.45)

Let us consider the situation at HW. At HW: h — h = n and U = vsine. Making use of the
Scaling Equation, (2.97), this leads to:

0.5
CHW = Co <1 4 %) F% Hw COTSZSIH2E (3.46)

The root in the first term can be replaced by the first terms of a Taylor series expansion, if
n/h < 1. Hence:

- n . _ Ui 1 sine
caw =6 | 1+ ) F%%. + cors=sin’e = ¢ <1 + = (— +rs )) F%w (3.47)
( 2h h h\2 Flitw
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Now it can be seen that for rg = 1, F,(¥,®) = 1 and € = 7/2 (the case of an undamped
progressive wave in a prismatic channel) this is the same as Airy’s equation. In alluvial estuaries,
however, the value of sin?¢ is O(0.1). With F.(¥,®) and rs being close to unity, this implies
that in alluvial estuaries the effect of the wave amplitude on the wave celerity is less strong than
Airy’s equation suggests. The general equation for the effect of depth and velocity variation on
wave propagation can be derived similarly as:

dsine

shor ) ) P

c=72p (1 - ﬁq:) FO5 _ ms%@sme:a(l - % (2 +r

This modified Airy equation, or (3.45), is useful to calculate the celerity at different moments
within the tidal wave, such as HW, LW, HWS, LWS or TA. For a small amplitude-to-depth ratio,
the direct effect of the water level fluctuation on the wave celerity will be small, but for large
amplitude waves, the wave celerity between HW and LW can differ substantially. In extreme
cases, the HW following LW can catch up with the previous LW, resulting in a tidal bore.

But in case of a damped or amplified wave, the effect of the function F.(¥,®) can be much
stronger. So let us first explore the behaviour of this function.

(3.48)

A solution for HWS and LWS

The values of C., S., R., and D; vary during the tidal cycle. In Table 3.2 the values of these
terms are presented for special moments during the tidal cycle: HW, LW, HWS, LWS, the tidal
average situation (TA) and at maximum flow (MAX) during ebb and flood respectively. In this
Table, it is assumed that the functions ® and ¥ behave like sinusoids.

Table 3.2: Values of terms determining tidal propagation for HW, HWS, LW, LWS, TA and
MAX flow situations.

HW LW HWS LWS TA ebb TA flood MAX ebb MAX flood
¢ 0 7r € m+e /2 3 /2 w/2+¢€ 3r/2+¢€
(0] sine —sine 0 0 — COSE COSE -1 +1
@’ CosE -1 1 —sine sine 0 0

1 -1 cos€E —CosE 0 0 —sine sine

CC _Ct:;nE% _Ctan% 0 0 watcans watcans _ﬁ ﬁ

fu(sing)? fu(sine)? 0 0 —fvcose — fucose fv _fv

€ hpyywcose h,ywcose hw hw hw hw

D, @1l iy L 9u oogp 90K coge 0 0 9 ging 0 gipg

D2 CLZHGJU c‘zneé 0 0 wtafxs‘su wta(r:lsé-u £6U _£6U
D3 :;&;57’511 ZZ&;“EJ” H 0 0 0 0 csmend csmena
D4 vsm::)tansé _vsmf}taneé 0 0 :;):::26 ngzesé‘ —%6[] _‘%JU

If the tidal wave progresses as a non-deformed wave, any convenient moment during the tidal

cycle can be selected to determine the wave celerity. It can be seen from Table 3.2 that it is

very attractive to solve the equation for the moments of HWS and LWS where: U = 0, C,. = 0,

R.=0, Dy =0, D3 =0, and Dy = 0. Hence, the expression for the function F.gws rws reads:
gné

=1/ ( . coss)
vw

F, (0,cose) = (3.49)
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and the equation for the celerity of the wave (at slack time) reads:

2
€o

1
= gghFCHWS’LWS = ( (3.50)

_ 9. dn
1 e d cose)

where D, = Dy and h is the water depth at slack time. Since the water depth at HWS is larger
than at LWS, the celerity of the wave is higher at HWS than at LWS. Hence, the assumption
that the wave is non-deformed is only valid if the depth at HWS is not much different from the
depth at LWS, or if 7cose < h. In that case the average depth may be used.

Equation (3.50) is an expansion of the classical equation for wave propagation by a simple
damping factor F = 1/(1 — D). The expression for D can be made even simpler if we make use
of subsequently egs. (2.97) and (2.96):

D= id—T]cose= ﬂ<5Hcose3=
vw dT vw

- (3.51)

1 c\2; (1—dpa)
H—— = (—) op———
rswe - tane w a

The equation thus obtained is surprisingly simple and provides clear insight into the factors
that influence tidal propagation. It can be seen directly that: the classical equation is obtained
if convergence balances friction and there is no tidal damping or amplification (if i = 0). The
wave is slowed down under tidal damping (dn/dz < 0) and accelerated under tidal amplification
(dn/dz > 0). If we analyse the origin of the terms in the denominator, we see that the 1 represents
the acceleration term in the momentum balance equation, while the second term represents the
damping component of the depth gradient in the momentum balance equation.

What can we say of the wave celerity at TA? At TA the depth is the same for the flood and
ebb tide. The asymmetry between TA-flood and TA-ebb is in the D4-term and in the left hand
member of (3.43) where the velocity has a different sign. Both cases of asymmetry are negligible
if the Froude number is small. Disregarding the D4-term one can demonstrate that the celerity
at TA and HWS/LWS is the same, making use of the damping equation. Hence we can use
equation (3.45) with F, = 1/(1 — D,.), using the expression for D derived for HWS/LWS also
for HW, LW and TA, provided we take account of the correct water depth and velocity at these
moments in time.

Rearrangement of (3.19) yields the expression for tidal damping or amplification:

b (1
g_zzn((1+_9ﬂh_)) :"0‘( (1+03 )

cusine

(3.52)

which we can use to substitute into (3.50), so as to obtain an implicit relation for the wave
celerity with:

co\ 2 sine cose [ ¢ ,usine sin 2e ¢ R
1 (c) =D.= 1+ a) (wa f wh >_2(1+a) (wa w) (3:53)
In (3.53) both the nominator and denominator of D, have been multiplied by a. As a result,
the denominator (1 + «) has a value close to unity. In the right hand side of (3.53) the friction
term of Jay (1991) is used, with R’ = f’vsine/h. It can be seen clearly that ¢ = ¢y when the
convergence and the friction terms are equal.

It is interesting to look at what would happen if D, equals unity. Since the 1 in the denom-
inator corresponds with the acceleration term, it implies that critical convergence occurs when
convergence and acceleration cancel out. This was termed critical convergence by Jay (1991).
In Section 3.3 we shall see that the situation of critical convergence is the transition to a stand-
ing wave, where the wave celerity becomes infinite and the estuary synchronous (HW and LW
occurring everywhere at the same time).

Simplifying the damping equation

Now that we have an expression for the wave celerity, we can simplify the damping equation
as expressed by Eq. (3.19). In Intermezzo 3.1 the details of this algebraic manipulation are
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1 , U2

Sg=— — f
"2 7 2ngh

presented, resulting in a much simpler damping equation
(3.54)

Intermezzo 3.1: Simplification of Eq. (3.19)

We make use of the goniometric equality
2 =1+ (tane)?

(cose)™

and substitution of the Eq’s for the tangent of £ (2.96) and the cosine of £ (2.95), this becomes

() oo ()
v h(l1—éya) c(l—éya)
or:

() - (2)" = (A2me)’

vh c) a

Reworking the damping equation (3.19), making use of (2.97)

1-dna v 1 conrs 2

( a ) 2 nrg + H( vh )

and reworking the celerity equation (3.50) using the expression for cose en cg
1-6 Ha)

() =1-au(3)" (=

c

or:
(1=tee) - (3)21 ~ (cofe)?
a ~ \eo Sy
Substitution of the left hand members of the reworked (3.19) and (3.50) in the goniometric equation
nwrs \ 2 w\2 Jul 1 conrs 2}(w) 1— (co/c)?
— (%Y = Y | ol
( vh ) (c) { c? 17r3+ H( vh ) co SH
or:
conrs\2 _ (co\2]| _ conrs c0)?
n{ () - (D= {ra s+ (5 (- (2))
coms)2 ((C_o )_ 02 1
c e nrs

c

co\ 2 ,v2 1
su{(2)'}={ra s +on(52))
0?1 conrs 2}

Sy =
" { e nrg 00277"5

Division by (co/c)2 #0:

Re-substitution of the reworked damping equation:
5H=(1—6Ha)_f,v_22 1
a co® Nrs

or:
1 1 1 2
Wy==—f == f
a co?nrs  a ngh

We can now use the simplified damping equation to, in turn, simplify the celerity equation

which then reduces to:
1_(@)2_gncose l_f,i _(c_o)ﬁ(l—éﬁa) l_f,i _(c_o) 1-éga 5
¢/ 2vw \a ngh) \w 2a a ngh) \w a "
(3.55)
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3.2.3 Empirical verification in the Schelde and Incomati estuaries

The theory described in the previous section has been confronted with observations made in
the Schelde and Incomati estuaries. Figures 3.5 and 3.6 show the application of the theory to
wave celerity in the two estuaries. The equation performs considerably better than the classical
equation. In the Incomati the correspondence is very good, with the exception of the part
nearest the mouth. In the Schelde the line for HW is very good, but the line for LW shows
a deviation upstream from the point located 150 km from the mouth. The reasons for these
deviations should be sought in the relatively high ratio of tidal amplitude to depth and the effect
of river discharge, of which the details are given by Savenije and Veling (2005). For the sake of
comparison, Figure 3.5 also shows the relation derived by Friedrichs and Aubrey (1994) for the
tidal average situation.
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Figure 3.5: Propagation of the tidal wave in the Schelde estuary observed at high water (HW)
and low water (LW) 21 June 1995 (indicated by triangles). The thick drawn lines represent the
computed wave propagation. The thin drawn line represents the wave propagation according to
the method of Friedrichs and Aubrey (1994).

Figure 3.7, shows the variation of the damping term D, as a function of z in the Schelde
estuary. The thick line is the value obtained by (3.50) using observed values of dn/dz. The line
indicated by D" is obtained with (3.53). The reason why this line deviates from the previous
line upstream from 140 km is because it does not take into account the effect of river discharge
on tidal damping. This can be seen if we consider the thin line (indicated by D’), which was
obtained by using a slightly more sophisticated formula than (3.52), developed by Horrevoets
et al. (2004) taking into account the effect of river discharge. The theory on the effect of river
discharge on tidal damping is presented in Section 3.5. The line that takes river discharge into
account fits the observed data very well.

3.2.4 Overview of the set of equations

With the derivations made in this and the previous chapter, we have formulated a set of analyt-
ical equations with which the St Venant equations can be solved analytically. These equations
are new in that they are based on a consistent set of assumptions and that they have general
applicability, whether the wave is progressive, standing or of mixed character. The equations are
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Figure 3.6: Propagation of the tidal wave in the Incomati estuary observed at high water (HW)
and low water (LW) 23 June 1993 (indicated by triangles). The thick drawn lines represent the
computed wave propagation. The thin drawn line represents the classical wave propagation.

0 20 40 60

-25

-3.5

[km]

Figure 3.7: The variation of the damping term along the axis of the Schelde estuary. D indicates
the damping term obtained by Equation (3.50), using observed values of dn/dz. D" was obtained
with Equation (3.53), D" by substituting (2.93) in (3.50), and D’ by using the equation of
Horrevoets et al. (2004) that accounts for the effect of river discharge on tidal damping.
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summarised in Table 3.3. They constitute: the “Phase Lag equation” (Eq. 2.85), the “Geometry-
Tide relation” (Eq. 2.93), the “Scaling equation” (Eq.2.97), the “Damping equation” (Eq.3.19)
and the “Celerity equation” (Eq.3.53). These equations are also compared to their “classical”
counterparts, which have been used widely in the past. The basic requirement for these equations
to apply is that the geometry should be exponential and that the estuary should be ‘long’. But
even for short estuaries the equations can be used if we relax the assumption that the damping
of the tidal amplitude and the tidal velocity are equal.

Table 3.3: Overview of the set of analytical equations

Name Equation number Newly derived equation “Classical” equation
Phase Lag equation (2.96) tane = ;745
Geometry-Tide relation (2.95) f-_m— Tfa %2 W = fa
Scaling equation (2.97) rsd =2 a5 el =¥
Damping equation (3.54) }’% =ég=3 (i - f’:y—z—) }lg—'lx =4
Celerity equation (3.55) ct=ck [1 — 5‘2’2- K%ZJH] E=ck= igz

The main innovation of these equations compared to their classical counterparts is: 1) the
prominent presence of the phase lag €, 2) the role attributed to tidal damping, and 3) the balance
between convergence and friction. These three effects are often disregarded in classical analysis
or treated in conflicting ways. In analysing the effect of these factors, it is interesting to look
at when an equation collapses into its classical counterpart. The Geometry-Tide relation equals
the classical equation when damping is zero and € = 0 (a standing wave). The scaling equation,
however, is the same as the classical counterpart when € = 7/2 (a progressive wave). Obviously
if one uses these two classical equations jointly in a certain situation there is a serious lack of
compatibility.

The classical counterpart of the Damping equation is “Green’s law” derived from the conser-
vation of energy equation for a frictionless tidal wave. Jay (1991) demonstrated its limitations,
but it is interesting to see the similarity with the more general equation derived here. Green'’s
law coincides with the damping equation for zero friction (f' = 0). In fact, Green’s law is a
special case of the Damping equation.

The celerity equation equals its classical counterpart if friction and convergence are balanced
so that damping is zero (the condition for the ideal estuary). Moreover, we see that the celerity
equation collapses into the classical equation when cose = 0, which is the case of a progressive
wave.

Where the classical equations are contradictory in their assumptions (some assume a standing
wave, some a progressive wave; some assume friction or convergence, while others don’t) the
equations in Table 3.3 are consistent and compatible. They are general versions of their “classical”
counterparts, with the most important difference being the account they take of the phase lag
between HW and HWS. This makes the Estuary-Type Number (Ng = sin¢) a key parameter
in tidal hydraulics. One can conclude that the analytical equations, while remaining simple, are
a substantial improvement over the classical equations and that they provide new insight into
the propagation of tidal waves under damped or amplified conditions. They are the result of an
integrated theory for wave celerity and wave attenuation in which the phase lag between high
water and high water slack plays a key role; the phase lag being a fundamental characteristic of
an alluvial estuary, which is generally disregarded in perturbation analysis.
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3.3 Explicit solution of the set of equations

The beauty of the set of equations is not only that they form a consistent set of analytical
solutions of the St Venant equations, but also that they can be solved explicitly. Until here we
have presented them as implicit equations, meaning that each equation contains parameters of
the other, whereby it is not simple to express one of the variables explicitly as a function of known
input parameters. In this section, based on Toffolon et al. (2006) and Savenije et al. (2008), we
show that by scaling and subsequent mathematical manipulation this is indeed possible, and
thereafter we shall explore the asymptotic behaviour of these equations.

3.3.1 Scaling the equations

We shall introduce a number of dimensionless parameters, some of which have been used before,
but for completeness we shall here present the full set:

(=n/h (3.56)

A=co/c (3.57)

where ( is the dimensionless tidal amplitude and A is the celerity number indicating the ratio
of the classical wave celerity to the actual wave celerity. We then introduce the dimensionless
friction parameter x, the dimensionless estuary shape number 7, and the velocity number pu:

y=-x (3.58)

X = Tsf:—%C = Xo¢ (3.59)

_ 1vh

1 v
p=——=
rsCco TS MCo

(3.60)

The estuary shape number v depends on the ratio of the square root of the depth to the conver-
gence length and on the storage width ratio. It is the main indicator for estuary shape. In v we
use the cross-sectional convergence length instead of the width convergence length. This means
that we base the derivations on (2.27) instead of (2.26). Note that the independent variables
are generally v and xp, which depend on the estuary shape and friction; ¢, A and p are depen-
dent variables. Since p represents the proportion of the Froude number to the tidal amplitude
to depth ratio, it is the key variable in the scaling equation. Finally, we need a dimensionless
damping/amplification number:

5= Ldnco

=T To (3.61)

With these parameters we shall scale the “phase lag equation” based on (2.85), the “scaling
equation” based on (2.97), the “damping equation” based on (3.19), and the “celerity equation”
based on (3.53). We then obtain the following scaled and far more simple equations:

The phase lag equation

tane = A (3.62)
Y

The scaling equation

(3.63)
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The damping/amplification equation

2

5= i) (v — xu*2?) (3.64)
The celerity equation
/\2=1—D=1—6%=1—5(7—6) (3.65)

The second form of the scaling equation corresponds with the “geometry-tide” relation, which
in fact is a combination of the scaling equation and the phase lag equation. All these are
relatively simple algebraic expressions, which is surprising, knowing how complex the set of
partial differential equations is. Of the 4 equations the damping equation is the most complex
one, but we shall see in the following that this equation can be simplified even further.

3.3.2 Solving the equations explicitly

This set of equations can in principle be solved iteratively, but it is also amenable to an analytical
solution, as was shown by Toffolon et al. (2006) and Savenije et al. (2008). Given the non-linear
character of the system, two families of solutions appear to exist: the standing wave solution
and the mixed wave solution, separated by the point of critical convergence.

Making use of the trigonometric equation cos™2& = 1 + tan®e, (3.62) and (3.63) can be
combined to eliminate the phase lag, giving:

(y—68)? = % — 22 (3.66)

Equations (3.64) and (3.65) can be rewritten as:
202, 0
¥ —68 = xpuA +l? (3.67)

1=
8

Isolating A? from (3.68) and substituting into (3.66) and (3.67), we can write two equations in
the unknowns § and p. After some algebra, it is possible to obtain a single tenth order equation
for p:

N—10 (3.68)

OCHC + 7' +2p° = 2) (u* —yp+1) (W +p+1) (3.69)
1 (vxut +2p% +2) |

The denominator of (3.69) is always strictly positive in physically meaningful cases. Concerning
the numerator, the relationships delimited by the first and second parentheses give rise to two
different families of solutions (the first family representing the mixed tidal wave and the second
family the standing wave), which will be considered separately below. The equation delimited
by the third parenthesis gives no positive roots for pu.

Solution for the mixed wave (the first family of solutions)

We can now derive simpler relationships considering only a single family of solutions. Introducing
(3.67) and (3.68) into (3.66), we end up with

A2 [6 (1 - %) +xp? (1- X")] =0 (3.70)

which can be simplified for A? # 0, neglecting the second family of solution. In this case, (3.70)
along with (3.67) gives a simple expression for the damping/amplification equation, relating ¢ to

75

Hubert H. G. Savenije



Chapter 3: EXPLICIT SOLUTION OF THE SET OF EQUATIONS 81

1
Om = 5 (v = xkm) (3.71)

where the subscript m denotes the mixed tidal wave. In dimensional form, this is the same
equation as the Damping equation (3.54).

Where (3.64) is a general version of the damping equation (including the occurrence of a
standing wave), (3.71) is a much simpler equation, which is similar to damping equations derived
by others, as we shall see in Section 3.4. In (3.71) we still see the balance between friction and
convergence, where the condition for an ideal estuary is that v = yp2,.

Substituting (3.71) into (3.68) it is also possible to find

2 = XM —°
m 4
These two equations for d,, and A, can be used to eliminate § and A from (3.66). This leads to
a single equation for p,,:

+1 (3.72)

X Mgy + VXt + 2410 —2 =0 (3.73)

which corresponds to the first family of solution of (3.69) and represents the propagation of a
mixed wave with 0 < £ < 7/2. It can be solved as a third-order equation in x2. The real solution

is:
1 2-6
pm=\/—<m—’y+7 ) (3.74)
3x m

1/3
m= [27x +(9-12) v +3V3V/2Tx2 +2(9— 121X + 8 — 72] , (3.75)

with:

With this solution for p,,, explicit solutions can be obtained for A,,, d,,, and &,,, by substitution
in (3.72), (3.71) and (3.62), respectively.

Critical convergence

Equations analogous to (3.73) can be written also for the other unknowns. For instance, the
equation for A reads

16X, +8 (12 = ) M + [(1F = 0)" +4(x+ D] A2 = [ = (1 = 4) (;x + )] =0, (3.76)

which can be seen as a third-order equation in A\2,. The solution is physical only if real roots
exist, i.e. if A2 > 0. If A2 = 0 the threshold condition, according to (3.76), reads

x> = (¥ —4) (vex+1) =0, (3.77)

where 7, is the limit for critical convergence, defined as the threshold condition for the transition
from the mixed tidal wave (first family of solutions) to the standing wave (second family). Below
we show that the second family of solution is completely determined by the convergence alone.
Hence, critical convergence can also be defined as the limit for which the solution is influenced
by friction. For weak friction, this boundary for critical convergence is similar to the one defined
by Jay [1991] as the convergence rate at which convergence and acceleration effects are equal
and opposed. For a frictionless tidal wave v, = 2, which is the same value as obtained by Jay
(1991). At this point the phase lag approaches zero, which is similar to the impedance phase ¢
of 90°, obtained by Jay (1991). On the other hand, when friction becomes important, the two
definitions of critical convergence lead to different results.

The relationship (3.77) defines the region of existence of critical convergence in the y —+ plane
and can be solved for one of the two parameters as a function of the other one. The expression
for x where v = 7. reads:
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x(10) = 3% (2 = 4) + 5 (12 —2) VAT =4 (3.78)

where the condition 7, > v/2 (which is always satisfied, because . > 2) has been used to simplify
the solution. The inverse solution for 7y is a more complex expression:

1 |my (12x2 +1)
e =3 [ 5 —1+2 s (3.79)
with
1/3
my = [36)(2 (3x*+8) — 8+ 12x\/§\/ (x2—2)* (27x2 — 4)] (3.80)

The threshold condition is shown in Figure 3.8: the solution for the mixed wave exists for
v < Ye(x), where v, is the threshold for critical convergence, which increases with starting from
~. = 2 for the frictionless case.
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Figure 3.8: Phase lag € and friction parameter x as a function of convergence parameter  under
special conditions:.

Solution for the standing wave (the second family of solutions)

Beyond critical convergence, the tidal wave behaves as a synchronous standing wave, where HW
and LW are reached simultaneously along the estuary. This is the second family of solutions.
For a standing wave A = 0 applies, which is the solution we have excluded in the simplification
of equation (3.70) used to derive the first case. Imposing A = 0 in the set of equations, we find
that (3.66) is redundant since it is exactly the product of (3.67) and (3.68). Then, equating the
latter two equations, one easily obtains:

P2 —ypus+1=0 (3.81)
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fs =0 (3.82)

£s =0 (3.83)

where the subscript s stands for the standing wave solution, which pertains to the case where
v > 7ve(x). Equation (3.83) follows directly from (3.62).

These equations corresponds to the second family of solutions of equation (3.69). Equation
(3.81) gives real solutions only if v > 2, which means beyond critical convergence; the physical
solution hence reads:

ps = % (v-vAr=4) (3.84)

If v goes to infinity, this equation will approach p, = 1/7. Similarly we can derive the damping
equation for a standing wave:

5, =1 (7 Y- 4) (3.85)

2

which again gives the limit §; = 1/ when v goes to infinity.

The threshold condition (3.77) ensures that the transition between the two families of solution
is smooth from the mixed tidal wave, given by (3.76), to the apparent standing wave where A = 0.
It is possible to demonstrate that also the transition between the solutions (3.74) and (3.84) is
continuous.

We now have explicit solutions for the variables mu, lambda, delta and epsilon for both the
standing and the mixed wave. In the following we shall consider a number of special solutions
and we shall explore the asymptotic behaviour of the equations.

3.3.3 Specific solutions and asymptotic behaviour of the equations

In the following we analyse particular (asymptotic) solutions of the mixed wave that correspond
with the situation 1) a constant cross-section, or 2) the ideal estuary, or 3) the frictionless estuary.
Finally we shall analyse the asymptotic behaviour of the damping equation as x goes to infinity.

Solution for an estuary with constant cross-section

A special case of the mixed wave solution is the situation where there is no convergence, i.e.
when v = 0. In that case equations (3.71), (3.63) and (3.65) yield:

S0 = _#3’2_‘ (3.86)
coseg = —pody = ’2—‘u3 (3.87)
82
taneg = _do_ _V1t% (3.88)
do do
2\ 2
AZ=1+ (%) (3.89)

where the subscript 0 denotes the zero convergence situation. Using (3.74), and the condition
that v = 0, we can derive explicit expressions for pg, dg, €9 and Aq:

2 _
mg — 6

o = (3.90)

3mox

3 1/3
s (x4 7 3) aon

with:
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5o = mfn;ﬁ (3.92)

COSEy = % <m33m_06)3/2 (3.93)
taneo = {/1+ (n%"ﬁ’ﬁy (3.94)
A2 =1+ (7'2%7';6)2 (3.95)

With these equations the damping and phase lag of a wave in an estuary with a constant cross-
section can be computed. We see that the damping, wave propagation and phase lag purely
depend on the friction ratio, which is in agreement with the literature (e.g., Lorentz, 1926; Lamb,
1932; Dronkers, 1964; Ippen, 1966a; Van Rijn, 1990). In these solutions the tidal amplitude is
damped exponentially and the tidal wave celerity is reduced accordingly. All these authors used
linearized St Venant equations and a constant damping number (exponential damping). As a
result, their equations for the tidal wave propagation in a channel of constant cross-section under
the influence of friction are less accurate and less general than the solution presented here.

In the special case of no friction we obtain mg = v/6 and hence, as expected, that Ao = 1 (the
classical wave celerity) and dp = 0 (no damping). One can also demonstrate that as x approaches
zero, o approaches unity and e approaches m/2: the case of the undamped progressive wave.

Solution for an ideal estuary

An interesting special case of the first family of solutions (the mixed tidal wave) is that of the
ideal estuary (subscript I), where there is neither tidal damping nor amplification. Hence, where:

6;=0 (3.96)
In this case, the system (3.66)-(3.68) yields:
A =1 (3.97)
1 Y
2 _ I 3.98
K 72 +1 X1 ( )

which is the condition of solubility (representing the relationship between friction and conver-
gence parameters necessary to obtain a balance between damping and amplification of the wave
amplitude). This yields:

xr=v(*+1) (3.99)

which has been tested against numerical results in Toffolon et al. (2006). The phase lag can be
estimated from equation (3.62):

1
tane; = — (3.100)
Y

In addition, it follows from substitution of these values in (3.63) that:

) ¥ 1
siner = pr \/x: \/72 1 (3.101)
[¥_ [ 2
coser =Yg o o) (3.102)

These relations for x; and £ are also presented in Figure 3.8.
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Solution for a frictionless estuary

Finally, a special case of the first family of solutions is the frictionless estuary. The second family
of solutions, already is independent of friction. This is because in the damping equation (3.19)
the friction is neutralised if £ = 0. In fact, an apparent standing wave has zero velocity at HW
and LW and, as a result, the friction term falls out of the equation in the derivation of (3.19)
(Savenije, 2001b). If a mixed wave has an infinitely small tidal amplitude, or if the estuary is
frictionless, we also obtain xy = 0. Under that condition, the expression for the velocity number
(3.73) simplifies substantially, leading to:

pyp=1 (3.103)

where the subscript f denotes the frictionless situation. In addition we find:

5;=7/2 (3.104)
A =1-(y/2)?° (3.105)
and
cosef =y/2 (3.106)
sinef = Af (3107)

The special case of a frictionless estuary with constant cross-section (y = 0) results in a
purely progressive wave, with e =7/2,§ =0 and A = 1.

In Figures 3.13 3.16 we present diagrams of the solution of the mixed and standing wave,
indicated by the red lines. The curves representing the frictionless situation are clearly visible
as thick lines in the graphical representations. The mixed wave equations for d; and cos(ey) are
simply straight lines; the equation for X‘} is a parabola. Surprisingly, the equations describing
cos(¢) and § appear to behave as near-straight lines for the cases with friction as well.

Table 3.4 present a summary of the 5 equations in the mixed wave, the standing wave, and

for constant cross-section.

Table 3.4: Dimensionless equations for tidal wave propagation in alluvial estuaries.

Name Mixed wave Standing wave Constant Cross-section
Phase Lag equation tane = v_ia e=0 tane = —%
Geometry-Tide relation w= %S_(-%l p=1 (,y /A% - 4) po=—ce
Scaling equation = s'ﬂ)‘ﬂ u= S'_'i\(il
Damping equation =1 (y—xu?) 6=3 (7 - m) § = —Lyu?
Celerity equation A2 =1-—4(y— ) A=0 A2 =1+ 62

Asymptotic behaviour of the damping equation

We start from the damping equation of the mixed wave. If we introduce the dimensionless tidal
amplitude y = n/no, then the damping equation can be written as:

dy gy Yy
W_y (1 _ E) (3.108)

Version 2.6



86 SALINITY AND TIDES IN ALLUVIAL ESTUARIES

where (3 is the ideal dimensionless amplitude defined as:

-2 h
Xok? Mo

Because (3.108) applies to the mixed wave alone, it is a simpler equation than the general
dimensionless equation of (3.26). Analogous to that equation we see that convergence and friction
are in balance if y = 3, so that there is no tidal damping or amplification. In fact there are two
situations where there is no damping. The first one is the trivial situation where y = 0, and the
other is where y = 3.

We can integrate this equation if we assume that 8 is constant with z, which is correct if p
is constant along the estuary axis. From the definition of p, this is the case when there is no
bottom slope, the storage ratio is constant, and the ratio of the velocity amplitude and the tidal
amplitude is fixed (4, = d). For a general performance analysis this is a reasonable assumption.
Further down we shall check specifically if this is a correct assumption for the asymptotic solution.

(3.109)

Upstream asymptotic behaviour

For constant 8 we can integrate x as a function of y, resulting in:

dz / dy
— = 3.110
2~ ] ya-v/B) (3:110)
where (3, is the constant 3-value. Using the boundary condition that y = 1 at z = 0 yields:
z 1- :Bc )
—=In|——+— 3.111
= (550 (8.111)
or: 8
- ¢ 3.112
Y= 120 —B.) ezp(—2/(2a)) (3.112)
In the asymptotic situation where z goes to infinity, this implies that:
h 2
Ying = B = — - — = XIF1 Thinf (3.113)

Xok2 1m0 XH® 1o
where the second step in (3.113) follows from using expression (3.98) for p. This implies that
in the upstream asymptotic situation the amplitude tends to an ideal estuary with constant
amplitude. If y;,y > 1, then the estuary is amplified; if y;n,y < 1, then it is damped; and if
Ying = 1, the estuary is ideal.

Using (3.98) for p of an ideal estuary, the amplitude then becomes:

T +) R w o, h2
inf =P = ———=— = — +1) — 3.114
Tinf = B0 T 607(7 )Tsf (3.114)
or: ( 2 )
_h07+1)
Ginf = P—— (3.115)

which are expressions that only depend on the geometry and the friction, and are independent
on the boundary conditions. The caveat is that the equation applies to long estuaries where we
may assume that d, ~ 6. We can see that in deep convergent estuaries (with large «), this
can lead to a large equilibrium amplitude. Using the scaling equation to elaborate this equation
together with (3.97) and (3.101) implies that:

Ving _hy?+1
o a f
It is interesting to note that if an estuary is long enough, the system will readjust until the
conditions of the ideal estuary are achieved. This is an indication that the ideal estuary is the
energetically stable state of an estuary to which the forces of nature converge. Also note that
the variables in these equations are all independent variables related to the geometry and the
friction, and hence that the asymptotic state is independent of the tidal forcing.

(3.116)
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Downstream asymptotic behaviour

Near the estuary mouth, we can also look at the asymptotic behaviour. To what extent is the
damping exponential? We can approach the longitudinal damping or amplification of the tidal

amplitude by a Taylor series:
2

T
yzyo+y6z+yg7+... (3.117)

On the basis of (3.108) we can determine the second derivative, but in this case we cannot
assume 3 to be constant:

v_ Ly
dz?

_ ﬁ (y _ (-2 L+ 2£) (3.118)

B B
Substitution of yo = 1 yields:

m1e Z (1o L) L=y (32200 2
y~1+2a(1 5)+2(2a) <1 3 +ﬂ2)+... (3.119)

In a region close enough to the mouth where z < 2a, we can see that, if 8 is constant,
the damping or amplification behaves as a linear function. If 8 is very large, then the slope is
1/(2a). For small values of 3 the gradient becomes negative and the steeper it gets, the less linear
the behaviour. A large value of 8 occurs in deep and strongly converging estuaries, which are
generally amplified. Hence we see that amplification is often linear, as is the case in the Schelde.
The region where amplification is linear may extend over quite some distance into the estuary.
The non-linear (exponential) effect only becomes apparent when we move further upstream. In
contrast we see that the process of damping is never linear but closer to an exponential function.

To see if the above Taylor series is similar to a Taylor series of exponential damping with
y = exp(dyx), we can develop the exponential equation in a Taylor series (making use of (3.108)
to determine d5). We can then see that the first two terms are only the same as in (3.119) if
y = 1, but that the third term has a different structure. So the exponential approximation is not
correct in general, but not too bad in near ideal estuaries where y is close to unity.

3.4 Other formulations for the friction term

The most difficult nut to crack in solving the St. Venant equations analytically is how to deal with
the non-linear friction term. The classical way is to use Lorentz’ linearization, that dissipates
the same amount of energy as the non-linear friction term. Dronkers (1964) did the same, but
considered an over-tide and by doing so catered for the major part of the non-linearity inherent
in the friction term. Our approach presented in section 3.2 does also retain the nonlinearity
inherent in the friction term, by considering the envelopes at HW and LW and assuming that
the tidal velocities at these point in time can be adequately described by vsine and —wvsine
respectively, which is another way of solving the non-linearity problem. Because it still uses the
sine function to describe the velocity at HW and LW it is called a quasi-nonlinear method.

In this section we shall compare different formulations of the friction term and see how they
compare to observations. It is largely based on the work of Cai et al. (2012b). We’ll see that
a combination of the linear and quasi-nonlinear approach performs remarkably well, while still
allowing simple analytical solution.

3.4.1 Different formulations of the damping equation
The linearised friction term

Lorentz’s linearization (Lorentz, 1926) of the friction term R reads:

8 v
B

R (3.120)

which is a slightly different formulation as in (2.47).
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Following the procedure proposed by Savenije (2005) and considering the linearized friction
term (3.120), instead of the quasi-nonlinear friction term (2.5), in the momentum equation, it is
possible to obtain the linear damping equation Toffolon and Savenije (2011):

_Y_Axme
5= Y (3.121)

Dronkers’ friction term

Dronkers (1964, p. 302) suggested an interesting higher order formulation for the friction term
(see also Cartwright (1968)), leading to results that are comparable to those obtained using
the fully nonlinear formulation for the friction term. Dronkers (1964) took account of over-
tide generation by including a third order term (cubic velocity) in the friction term, while also
assuming that U is a periodic function with zero mean:

16 v [U U\*
=—— | —+2| — 3.122
D 15,"_K2E4/3 [U + (v> :| ( )
Note that this equation does not account for the time variable depth in the friction term. In our
symbols the expression for the tidal damping using Dronkers’ friction term would read:

s_Y_ 8 xu 16x3A

2 15w A 15w (3.123)

3.4.2 Performance of the different friction formulations

In order to investigate the performance of the analytical solutions, they have been compared with
a fully nonlinear numerical solution of the governing equations (2.1) and (2.2). The numerical
model (Toffolon et al., 2006) is based on the explicit MacCormack method, which is second order
accurate both in space and in time. A total variation diminishing (TVD) filter is applied to
avoid spurious oscillations, especially when the wave steepens because of frictional or geometrical
effects.

Since we focus on the tidal damping in this study, in this section we present a comparison
between the values of the dimensionless damping number § estimated using analytical methods
against the fully nonlinear numerical results. We consider a wide range of parameters (with
1<7<3,01<¢<03,10m'3s ! < K <50 m*/3s~! and h=10 m) covering a wide spectrum
of tidal channels. In order to present dimensionless results, distance z is scaled by the frictionless
wavelength in prismatic channels:

=2y (3.124)
co

Figure 3.9 shows the performance of the different analytical models at a single position
z* = 0.426 (corresponding to 30 km for a 10 m deep estuary). Both the linear (Toffolon and
Savenije, 2011) and the quasi-nonlinear (Savenije et al., 2008) solution behave reasonably well,
but none of them is fully correct for a finite amplitude wave. It appears that Dronkers’ approach
lies closest to the numerical solution, and that Savenije et al. (2008) and Toffolon and Savenije
(2011) have a consistent bias from the numerical solution. The former method underestimates
the tidal damping, while the latter overestimates it.

The reason for this behavior lies in the different simplifications used in the friction term F'.
Toffolon and Savenije (2011) used Lorentz’s linearization (3.120), which is based on the equal
energy dissipated by linear and quadratic friction during a tidal cycle (assuming a sinusoidal
tide). On the other hand, working within an original Lagrangean-based approach, Savenije et al.
(2008) obtained the effective friction Fs acting over a tidal cycle by subtracting the high water
(HW) and low water (LW) envelopes, leading to:

A1 Ukiw Uiw

oo KZ(E+1]HW)4/3 ! K2(E— 7ILW)

7 (3.125)
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Figure 3.9: Tidal damping § at z* = 0.426 obtained with four different analytical models,
compared to numerical results: The weighted equation by Cai et al. (2012b), i.e. Eq. (3.127);
Dronkers (1964), i.e. Eq. (3.123); Savenije et al. (2008), i.e. Eq. (3.64); and Toffolon and
Savenije (2011)), i.e. Eq. (3.121). R? is the coefficient of determination, which provides an

estimate of the average deviation of the estimates of the different analytical models from the
assumed correct value (numerical model): the closer R? is to unit, the better is the model.
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where the two velocities at HW and LW follow from equations (3.10) and (3.11).

These approaches (linearized and quasi-nonlinear), which are correct for the strictly linear
case where the tidal wave is a simple harmonic, yield opposite biases in the damping equation
for finite-amplitude waves.

This behavior can be clearly seen from Figure 3.10, which compares the friction effectively
acting during a tidal cycle considering the different options. The damping in the three standard
Eulerian approaches (see also Vignoli et al., 2003)) is based on the definition of a tidally aver-
age friction term (|F|) = T~' [.|F|dt, where F is estimated as follows: the fully nonlinear
definition from (2.5) (blue line), Lorentz’s linearization Fy, from (3.120) (red dashed line), and
Dronkers’ relationship Fp from (3.122) (black dash-dot line). On the contrary, Savenije’s La-
grangean approach (3.125) directly provides the effective friction Fs (green dashed line), which
can be consistently compared with the previous ones. All quantities used in Figure 3.10 are ob-
tained by the numerical model, so the only difference is the approximation used for the friction
term. The comparison suggests that the tidally averaged friction term obtained with Lorentz’s
linearization overestimates the friction along the estuary, while Savenije et al. (2008) model tends
to underestimate it. In the middle, the third-order approximation by Dronkers (1964) is very
close to the complete nonlinear friction.

]0 : lO |l 1 1 I I T 1 I L
Numerical
< -~ Lorentz
9.5 ™ . Dronkers ]
\\-.,_‘v e Savenije

Effective friction

55 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

*
X =X e¥c
)

Figure 3.10: Comparison of the tidally averaged friction term (|F|) computed with different
formulations of the friction term: fully nonlinear (2.5) (blue line), Lorentz’s linearization (3.120)
(red dashed line), Dronkers’ expansion (3.122) (black dash-dot line); and for Savenije’s effective
friction Fg (3.125) (green dashed line). All estimates are based on variables obtained from
numerical results (y=1, (=0.1, K=30 m'/3s~! and h=10 m).

3.4.3 A combination of the linear and quasi-non-linear equation

Cai et al. (2012b) demonstrated that, as a whole, the two approaches to calculate the frictional
dissipation (i.e., using the linearized friction term or the envelopes of HW and LW) consistently
have an opposite bias. Because of this, Cai et al. (2012b) explored if the ‘true’ damping could
be obtained by taking the weighted average of equations (3.121) and (3.71):
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7 4 xp L
d= 5 =% (1 a)zxp (3.126)
For different weights of the linearized friction term a (from 0 to 1), it is possible to compare
the values of § obtained by equation (3.126) with the damping observed in the numerical results
for the same wide range of parameters as for Figure 3.9. Figure 3.11 presents the optimum
weight o with its standard error at different locations along the estuary and the corresponding
coefficient of determination R?. We can see that the optimum weight o becomes stable from
z* ~ 0.35 onward and that the equilibrium weight for « is about 1/3. The fact that the weight
is approximately 1 near the estuary mouth is the result of the imposed harmonic boundary
condition without overtides, which is consistent with the linear assumption. The stable values
of a that develop in the landward direction indicates that the wave adjusts its shape toward an
equilibrium shape.

[~ v d]
. I N N R

0 0.2 0.4 0.6 0.8 1 1.2 1.4

.
X =x a¥c
0

Figure 3.11: Optimum weight of the linearized friction term « with its standard error along the
estuary axis and the corresponding coefficient of determination R2.

Assuming o = 1/3, Cai et al. (2012b) obtained a weighted damping equation, which reads:

v o4 xp xp
=5 a3 (3:221)

This equation is very similar to Dronkers’ equation (3.123), which can be rearranged using (3.63)
in the following form:
5— Y 2 4 xp 32

1 5
T2 T 5Er A Ior SO (8.128)

Similarly to (3.126), the last two terms of equation (3.128) can be seen as a combination of
(3.121) and (3.71), whereby the weights of the linearized and nonlinear models would be o = 0.4
and 1—a = 0.68sin(¢), respectively, which is satisfied if £ ~ 7/3, a reasonable value for modestly
convergent estuaries.

By iteratively solving the set of four analytical equations (3.62), (3.63), (3.65) and (3.127), we
obtain a new analytical solution for the dimensionless parameters p, §, A, and e. The damping
number § has been compared with the other solutions in Figure 3.9, and we can see that the
agreement of equations (3.123) and (3.127) with the numerical model is very good, but the

Version 2.6



92 SALINITY AND TIDES IN ALLUVIAL ESTUARIES

latter obtains the best result with the highest coefficient of determination R? = 0.99. Moreover,
as we can see from Figure 3.12, where different versions of analytical solutions are compared
with numerical results, the weighted damping equation obtains the best result with the highest
coefficient of determination R? along the estuary axis, except near the mouth of the estuary
where the modified linear model (Toffolon and Savenije, 2011) achieves the best result due to
the purely harmonic wave imposed at the seaward boundary.

Apparently, by combining the two approaches of Toffolon and Savenije (2011) and Savenije
et al. (2008), we have obtained a more accurate analytical model, which is closer to the fully
nonlinear numerical solution.

0.95

0.9

%
n

0.8

CoefTicient of determination R°

Savenije ot al. (2008)
= = Toffolon and Savenije (2011)] ~
= === Dronkers (1964)
— (Cai ot al. (2012)
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x =x wic
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Figure 3.12: Longitudinal variation of the coefficient of determination R? between numerical
model and different analytical models for a wide range of parameters with 1 <y <3,01<( <
0.3, 10 m'/3s~! < K < 50 m'/3s~! and h=10 m.

3.4.4 Performance of the weighted damping equation

Figures 3.13-3.16 present the solution of the velocity number, the damping number, the celerity
number, and the phase lag obtained with the different analytical models as a function of v and
X- In these graphs, the blue symbols represent the weighted method by Cai et al. (2012b) using
equation (3.127), whereas the dashed red lines represent the solution of Savenije et al. (2008), the
drawn black lines the solution of Toffolon and Savenije (2011), and the dashed-dotted green lines
the solution with Dronkers (1964)’ friction term. Unlike the equation of Savenije et al. (2008),
which had two families of solutions for mixed and standing waves, both the weighted solution
and the solutions of Toffolon and Savenije (2011) and Dronkers’ approach provide continuous
solutions in the transition zone of critical convergence (Jay, 1991) where 7 is close to 2. In the
weighted method, a clear separation between the subcritical and the supercritical cases exists
only for vanishing friction (x = 0).

Comparing the weighted model with the other three models, we can see in Figures 3.13 3.16
that three zones can be distinguished. For small values of v (weakly convergent estuaries), the
main dimensionless parameters (p, d, A and ¢) obtained with the weighted model are closer
to the linear solution of Toffolon and Savenije (2011). In the transition zone where critical
convergence occurs in the model of Savenije et al. (2008), the result is about the average of
Savenije et al. (2008) and Toffolon and Savenije (2011). For larger values of v (the strongly
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convergent estuaries), we can see that the weighted solution is closer to the frictionless case.
Moreover, it appears that Dronkers’ solution is very close to the weighted solution for an amplified
wave with bigger v, while it is similar to Savenije et al. (2008) for waves with v < 2. For an ideal
estuary (where friction balances convergence), the four methods are identical.
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Figure 3.13: Relationship between the velocity number g (3.60) and the estuary shape number ~
(3.58) for different values of the friction number x (3.59). The blue symbols indicate the weighted
model exploiting equation (3.127). The red drawn line represents the frictionless estuary (x=0).
The dashed red lines, drawn black lines, and dashed-dotted green lines represent the solutions
obtained by Savenije et al. (2008), Toffolon and Savenije (2011), and Dronkers’ approach, re-

spectively. The green round symbols indicate the ideal estuary (u = ﬁ)

3.4.5 Application to the Schelde estuary

For given geometry, friction, and tidal amplitude at the downstream boundary, the dimensional
values of the tidal amplitude 7, the velocity amplitude v, the wave celerity ¢, and the phase lag
can be computed by using the analytical model presented in section 3.4.4. We have applied the
weighted equation to the geometry of the Scheldt estuary, assuming a convergence length for the
cross-sectional area a=27 km (see also Horrevoets et al. (2004)). Until 110 km from the mouth of
the estuary the flow depth is approximately constant (h=11 m), while more landward the depth
reduces gradually to 2.6 m (assumed estuary length L=200 km). At the estuary mouth (z=0
m), we assume a harmonic tide characterized by a tidal amplitude 7p=2.3 m (spring tide) and a
tidal period T'=44400 s.

The four analytical models have been compared with observations made in the Scheldt estuary
during spring tide on 14-15 June 1995. All models can potentially be made to fit the observations
if a suitable friction coefficient is used. However, this calibration provides significantly different
values of the Manning-Strickler coefficient: K=32 m'/3s~! for Savenije et al. (2008)’s model,
K=33m!/3s~! for Dronkers’ approach, K=39 m'/3s~! for the present model, and K=46 m'/3s~1
for Toffolon and Savenije (2011)’s model. Apparently the differences introduced by using different
friction formulations can be compensated by decreasing or increasing the friction coefficient.
Therefore, the different analytical models have also been compared with a 1D numerical model in
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Figure 3.14: Relationship between the damping number ¢ (3.61) and the estuary shape number
v (3.58) for different values of the friction number x (3.59). The symbols are as in Figure 3.13.

The ideal estuary is defined by §=0.
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Figure 3.15: Relationship between the celerity number A (3.57) and the estuary shape number
v (3.58) for different values of the friction number x (3.59). The symbols are as in Figure 3.13.

The ideal estuary is defined by A=1.
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Figure 3.16: Relationship between the phase lag £ and the estuary shape number « (3.58) for
different values of the friction number x (3.59). The symbols are as in Figure 3.13. The ideal
estuary is defined by £ = arctan(1/7).

the Scheldt estuary. The calibrated Manning-Strickler friction coefficient K used in the numerical
model (38 m!/3s~1) appears to be almost the same as the friction coefficient of the weighted model
(39 m'/3s~1), which is to be expected since the weighted damping equation (3.127) was obtained
by calibration of K against numerical solutions. In Figure 3.17, all models use the same friction
coefficient K=38 m!/3s 1. It can be clearly seen that the quasi-nonlinear model (Savenije et al.,
2008) and Dronkers’ method underestimate the tidal damping while the linear model (Toffolon
and Savenije, 2011) overestimates it. The reason for the overestimation of the travel time at LW
in the landward part in both the analytical and numerical models is due to the neglect of river
discharge and the high tidal amplitude to depth ratio.

Finally, the tidal characteristics of the Scheldt estuary, as computed with the weighted model,
are presented in diagrams for the velocity number, damping number, celerity number and phase
lag. In Figure 3.18, the Scheldt estuary is represented by red line segments. Next to the
segments, the distance from the estuary mouth in kilometers is written, indicating the length
over which a segment is representative. We can see that in the Scheldt the seaward part (0-
110 km) has a vertical line segment with a constant estuary shape number (this is due to the
constant convergence length and depth assumed over that reach). At the inflection point, at 110
km, the tidal wave approaches a standing wave, although a pure standing wave cannot occur in
the weighted method. Further upstream the pattern becomes irregular due to shallowing.

3.4.6 Final words on the friction term

We have seen that the set of analytical equations presented in Section 3.3 is a proper analytical
framework to test different friction formulations. Because the celerity equation is in principle
independent on wave shape, the dominant term to account for the non-linearity in the equations
is the friction term in the damping equation. We have seen that it is relatively simple to adjust
this term so as to better account for over-tides or other non-linear effects. The combined linear
and quasi-nonlinear method appears to work remarkably well.
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Figure 3.17: Comparison between different analytical models, numerical solution and field data:
(a) tidal amplitude, and (b) travel time at HW and LW in the Scheldt estuary observed on 14-15
June 1995.
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Figure 3.18: Positioning of the Scheldt estuary (red circles) in: (a) velocity number diagram, (b)
damping number diagram, (c) celerity number, and (d) phase lag diagram. The numbers at the
inflection points indicate the distance from the estuary mouth (in kilometers). The background
shows the lines of the weighted model with different values of the friction number x (3.59). The
drawn line with dots represents the ideal estuary.
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3.5 Effect of river discharge and other higher order effects
on tidal damping

3.5.1 Which higher order effects are important

In the previous sections a number of assumptions have been made regarding estuary hydraulics
and shape. The most important were that:

1. The topography is that of an ideal estuary, with an exponentially varying width and no (or
very modest) bottom slope;

. The Froude number is small;
. The tidal amplitude-to-depth ratio is small;

. The river discharge is small compared to the tidal discharge;

ot s W N

. The phase lag is near constant with z;

6 . The celerity is near constant with z.

It appears that in the upstream part of the estuary the third and fourth assumptions become
restrictive, particularly where it concerns the derivation of the Damping equation (as we saw
in Figure 3.5). The effect of river discharge is not always negligible and the tidal amplitude to
depth ratio is not always very small. In shallow estuaries, or in estuaries that experience tidal
amplification the tidal amplitude to depth ratio can approach unity. Both have a noticeable
effect on the friction term: the discharge because the velocity during ebb is stronger than during
flood and the depth because Chézy’s roughness coefficient is depth-dependent and hence friction
is stronger during ebb than during flood.

In the following, the effect of river discharge and a large amplitude-to-depth ratio on the
derivation of the tidal damping equation is explored. Subsequently a more accurate version is
derived for a situation where river discharge can no longer be neglected. It will be shown that
taking account of these effects primarily lead to a revised expression for the friction term.

In the derivation of the equation for wave celerity, similar assumptions have been made. We
shall see that river discharge does not influence the derivation of the celerity equation itself. If
however we use the revised expression for the friction term, then we can significantly improve the
prediction of the wave celerity in the upstream part of an amplified estuary such as the Schelde
where the river discharge is not small compared to the tidal flow. The derivations presented in
this Section are based on the work of Horrevoets et al. (2004).

3.5.2 Incorporating river discharge into the derivation of the Celerity
equation
In section 2.5 we analysed the effect of river discharge on the water balance equation. We shall

now further build on these findings to assess the effect on the damping and celerity equation.
The river discharge affects the celerity equation through U as in (3.129) and (3.130):

U =wsin(é) —¢ (3.129)

ou v <¢5u sin(§) — ? cos(&) — 9) (3.130)
ox c a

where ¢ = Uy /v.
Subsequently, the effect of the river discharge on the velocity gradient can be accounted for
in the damping term Dy:

Di= -2 v <5u + ¢) (3.131)

P'w a
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Although D, is normally an order of magnitude smaller than D, because it is scaled by the
Froude number, it may no longer be negligible if the river discharge is large compared to the
tidal flow. However, at HWS and LWS (even with a significant upstream discharge) Dy ~ 0
since® =~ 0 and hence there is no effect of the river discharge on this damping term.

The other possible effect of river discharge on wave propagation is through the friction term.
The friction term of (3.43) then needs to be adjusted as follows:

v o .
~¥oh (siné — @) [sin& — ¢| (3.132)

Slack is defined as the situation where the flow velocity is zero, which is the case when sin{ = ¢
and R. = 0. So there is no effect of river discharge on the friction term, but there is an influence
through the phase lag. The river discharge causes a shift in the occurrence of slack with HWS
occurring earlier and LWS occurring later (as we saw in section 2.5). Hence, these terms of the
celerity equation remain largely unaffected by river discharge. The largest effect is through the
damping equation, which is reflected in the terms D; and D3, of which, as we saw, D = D, is the
most important term. So the approach is to first adjust the damping equation for river discharge
and then to use this adjusted damping equation to account for the effect of river discharge on the
celerity equation. In addition (3.45) can be used to take account of the direct discharge effect on
the flow velocity.

In the following section we shall analyse the effect of the river discharge on the damping term.

R. =

3.5.3 Incorporating river discharge into the derivation of the damping
equation through the envelope method

In the following we shall use the Manning-Strickler equation (3.16) instead of the Chézy equation
(3.15) since the Chézy roughness coefficient C is depth-dependent, whereas Manning’s K is not.
Hence (3.4) is modified into:

b Hdz +—+L -1+

cVdh ¢V /1 1dH oh V|V|
( ) e ZoniEs =0 (3.133)
where K (= 1/n) is Manning’s coefficient and V is the velocity of a water particle in a Lagrangean
reference frame that moves with the water.
The same equations are used as in Section 3.1.2 for the depth and the depth gradients at HW

and LW (3.5)-(3.9). However we modify the velocity to account for river discharge:

Vaw = v (sin(e) — ¢) (3.134)
and similarly for LW:

Viw = —v (sin(g) + ¢) (3.135)

Here the assumption is made that the cross-sectional area of the stream at HW and LW is not
much different. This simplification is acceptable as long as the tidal amplitude is small compared
to the depth of flow. Combination of these equations leads to the following expression for HW:

cawv(sin(e) — @) dhgw cpwv(sin(e) —¢) (1 1 dH\  dhgw , (v(sin(e) — ¢))?
rs - T gas )T * 133 = —Iy+1,
ghaw dz g b Hdzx dz K2hpw
(3.136)
The last term is the friction term and has a positive value if sine > ¢ and a negative value if
sine < ¢.
Similarly for LW it follows that:

. cowu(sin(e) + 6) dhLW+chv(sin(e) +¢) (1 1dH\ dhuw (v(sin(e) +¢))* _ Lt
s ghLw dz g b Hdz dz K2hL33 b
(3.137)
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To arrive at an expression for the tidal range H, these equations should be subtracted, leading
to terms containing dH/dz or I. This is straightforward if the coefficients of the terms are the
same, otherwise it leads to correction factors.

Interestingly, the ratio of ¢/h in the first term is similar for HW and LW since both the
celerity and the depth are higher than average at HW and lower than average at LW. We shall
therefore assume that these two coefficients are similar, so that the terms can be subtracted. As
was observed in Section 3.1.2, the coefficients of the first term of (3.136) and (3.137) are scaled
a Froude number smaller than that of the third term, while the sum of dh/dx for HW and LW
is equal to the residual slope I, which is small compared to dH/dz. Hence, the first terms in
(3.136) and (3.137) are small compared to the other terms.

In the second term of (3.136) and (3.137), the celerity is different at HW and LW. As a result
a correction factor appears in the subsequent subtraction of these terms. In the last term (the
resistance term), the water depth is different at HW and at LW. This also leads to a correction
factor (f").

Subsequently, (3.136) and (3.137) are subtracted and combined with (3.4) and (3.7). Details
on the subtraction of individual terms are presented in Horrevoets et al. (2004). Subtraction
yields the following expressions:

for zone I, where sine > ¢:

1d_’7<l_ (48 +19)=Q_f'Li“(e)[1+8 ¢, ¢ ]—% (3.138)

ndz \a  “sin(e) b he 3°sin(e)  sin’(e)

for zone II, where sine < ¢:

1dn /1 &C 9 flusin(e) [4 2¢ 4 ¢? rsl
ndz (a rssin(e) + b he 3C+ sin(e) + 3Csin2(s) h ( )
where a is the tidal Froude number defined by (3.25) and equals u2, ¢ = n/h is the tidal amplitude
to depth ratio, I is the residual slope of the average water level, f’ is the adjusted friction factor
of (3.16), and ¥ is a correction factor for wave celerity defined as:

(chw —¢) ¢ Vrar ¢

V=1 ¢ sin(e) 1 ( 1+¢ 1) sin(g) (3.140)
The friction factor f’ compensates for the fact that friction is larger at LW than at HW and is
always larger than unity. It enhances the effect of friction. If { < 1, f’ = f. In the upper reaches
of an amplified estuary however, the friction factor can become very important as { approaches
unity (e.g. if ¢ = 0.5, f' = 1.8f). The coefficient 4/3 in these equations follows from a Taylor
series expansion of (h + )3 ~ h!33(1 + 1.33¢), if ¢ < h. Due to the factor 4/3, (3.16) only
makes sense as long as ( < 0.7.

The correction factor 1 compensates for the difference in wave celerity at HW and LW in the
second term of (3.136) and (3.137). It has a value smaller than unity, but is close to unity as
long as ( < 1 and ¢/sine is in the order of magnitude of 1 or less. In practice, J =~ 1.

Just like we saw in Section 3.1.2, the term rgl/h (the I-term) in (3.138) and (3.139) is
generally small compared to the convergence term 9/b. The average water level slope can be
scaled at less than h/L, with L being the length of the tidal influence (the length of the estuary).
Hence the ratio of the I-term to the convergence term is less than b/L. In estuaries with a strong
topography where b < L, the I-term can be disregarded, as for example in the Schelde, an
estuary with a strong topography (b=28 km and L=200 km), b/ L=28/200=0.28. The Incomati in
Mozambique is an example of an estuary with a strong topography in the lower segment but with
moderately converging banks upstream, where the ratio in the lower segment is b/L=6/100=0.06,
whereas in the upper segment it is b/L=42/100=0.42, thereby implying that the I-term may
become important in that part. Since the residual slope I is determined by the bottom slope,
the effect of the I-term may become important in the upstream part of an estuary. It implies
that when the bottom slope becomes important near the upstream end of the estuary, the I-term
gains prominence, the tidal amplitude is damped stronger and the tide dies out.
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The main difference between (3.138) and the earlier derived (3.17) is the introduction of
¢/ sine both in the friction term and in the denominator (which is the part between brackets in
the left hand member).

It can be seen from (3.138) that, since in alluvial estuaries { < 1, the impact of the river
discharge on the denominator is small, as long as ¢ is in the order of magnitude of 1 or less. If
Qg = 0 then (3.138) is the same equation as (3.17).

We can also write these equations in the dimensionless variables we introduced in section 3.3.
The equations then read:

for zone I, where sine > ¢:

2
5= K [197 . (¢2 + guxqsg + ,&\2) - %1] (3.141)
u? (19—1‘5}-%()+1 w
for zone II, where sine < ¢:
2
_ M _ 4 9 4 5y2.\ _ Tsco
0= [197 X (3¢ C+ 2uld + gH A C) oh I] (3.142)

p? (19— Ts,%() +1

Equation (3.141) is the same as (3.64) when ¢ = 0.

Cai et al. (2012b) applied these equations in the Modaomen estuary of the Pearl river in
China. In the upstream part of the estuary the influence of the river discharge is strong. They
used (3.141) to analyse the effect of upstream water diversions and dredging on the tidal damping
and wave propagation. Over time there appeared to be a significant trend as a result of these
human interferences and an increased risk for the propagation of storm surges.

3.5.4 Application to the Schelde estuary

With (3.138) and (3.139) an analytical model can be made that can be compared to observations
made in the Schelde on 14-15 June 1995. The characteristics of the model are based on the
Schelde geometry. The length of the estuary L = 200 km. The width at the estuary mouth By =
26 km. The convergence length b = 28 km. Up to 110 km from the mouth the depth of flow h =
10.5 m. There is no bottom slope before 110 km from the mouth, after which the depth reduces
gradually to 2.6 m. The estuary is subject to a harmonic tide at the mouth of the estuary (z =
0) with a tidal range of Hy = 4.4 m (corresponding with spring tide), a tidal velocity amplitude
of v= 1.2 m/s and a tidal period of T' = 44400 s. The tidal velocity is amplified and damped in
agreement with the damping and amplification of the tidal range, as observed by Graas (2001).

At the upstream end of the model (z = 200 km) there is a weir barrage where a river discharge
of 38 m®/s passed downstream on 14-15 June 1995. This weir corresponds to the weir in Gent.
The total river discharge amounted to 112 m®/s since there was an additional 74 m3/s coming
from the Rupel tributary at =128 km.

A phase lag of 40 min has been used throughout the estuary in accordance with observations
made by Graas (2001). For the celerity of propagation the average between HW and LW has
been taken, corresponding with the mean tidal situation.

Since it is not possible to solve the differential (3.84) and (3.85) analytically, a numerical
equation has been used: y, 41 = Y, + dy/dz* Az, with a length step z = 2.5 km. The equation
can be solved simply in a spreadsheet.

In Figure 3.5, the results of the spreadsheet model are compared to the observed water levels
in the Schelde during dead tide on 21 June 1995 (Q ;=41 m®/s). The model fits the observations
using a constant Manning coefficient K=38 m®33/s (n=0.026) along the estuary axis. This
implies that in the lower part of the estuary a Chézy roughness of 57 m®®/s applies. One may
conclude that by the introduction of the river discharge in Savenije (2001b) model an almost
perfect fit with observations has been obtained. In Figure 3.5, the weighted model is compared to
the original model (Q;=0) and to a situation of high river discharge (Q ;=100 m*/s). The effect
of the river discharge on the tidal damping is considerable in the upstream part. It appears that
the tidal range close to Gent is substantially reduced by the river discharge. This is primarily
due to the LW levels being higher. The HW levels are less affected by the river discharge.
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It can be concluded that j is strongly affected by river discharge if Q;/A approaches vsine.
This also may have a significant impact on the damping term D in the Celerity equation (Eq.3.58),
which is directly proportional to 1/3. The influence of river discharge on wave celerity is therefore
primarily felt through the effect of river discharge on tidal damping. Finally, the deviation seen
in Figure 3.10 between the observed and computed wave celerity for HW and LW in the upper
reach of the estuary may have three causes:

1. The tidal amplitude to depth ratio at LW approaches unity in the area near the 150 km
mark; however, the ratio of the tidal amplitude to the average depth remains below 0.5;

2 . The ratio of river discharge to tidal flow approaches unity near the 180 km mark;

3 . The shift in £ causes the celerity near HW to be close to ¢y and the celerity near LW to be
slower.

It is not completely clear which of these effects is most important. It is a fact however, that
the analytical solutions become less applicable as we move further upstream and the estuary
gradually gains a riverine character.

3.5.5 Conclusion

In the upper reach of the Schelde estuary, there appears to be an important influence of the river
discharge on the tidal range. The river discharge is largely responsible for the considerable tidal
damping that occurs upstream. The effect of the river discharge on tidal damping is primarily
through the friction term. An important point along the estuary is the point where the two
moments of slack occur at the same time, upstream of which the tidal flow no longer changes
direction and where the river discharge becomes dominant over the tidal flows. At this point,
which varies with river discharge, the friction term is dominated by the river discharge. The
reduction of the tidal range is primarily caused by higher water levels at LW, as a consequence
of the river discharge forcing itself through a narrow cross-section.

In this Section an equation has been presented that accounts for the effect of the river dis-
charge on tidal damping and tidal wave propagation. By the introduction of the river discharge
into the derivations, a considerable improvement of the existing analytical equation for tidal
damping could be obtained. The comparison of the equation with observations is quite good.
The equation is not complicated and can be easily applied e.g. in a spreadsheet. Although the
equation enhances our insight into the effect of river discharge on tidal damping and propagation,
we can’t use the equation far beyond the point where the river discharge and the tidal flow are
of equal magnitude.

3.6 The influence of climate change and human interfer-
ence on estuaries

The equations presented in the previous sections provide us with a very useful tool to assess the
possible impacts of human interference in the estuarine system as well as the effects of climatic
change. Man and climate can impact on the estuary through a number of ways:

e Dredging and deepening of access and shipping channels

Bank stabilisation, canalisation and constrictions

Closure of tidal branches and inlets

Construction of harbours

Sea level rise

Changed rainfall and evaporation patterns

e Modified river discharge regime
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Dredging can have a large impact on tidal hydraulics, particularly if it leads to general deepening.
If dredging is done in a way that the spill is dumped elsewhere in the cross-section, then dredging
does not lead to an increase of the cross-sectional average depth. If the spill is moved out of
the estuary, however, the average depth increases, which has various implications. There is a
difference in the short-term and the long-term reaction. The long-term reaction is a morphological
reaction which may change the shape of the estuary and particularly the convergence length. Such
a morphological reaction is slow and would most probably be counteracted by engineering works
of bank stabilisation, the estuary being a focus of engineering attention already. The short-term
reaction can be seen from both the Scaling equation (Eq.2.92), the Damping equation and the
Celerity equation (Eq.3.58). As the depth increases, the scaling equation suggests that the tidal
velocity would decrease and the celerity increase. The tidal range is fixed by the downstream
boundary, but could increase if a shallow sill near the estuary mouth is removed. These changes
all point towards decreasing friction in the Damping equation, leading to either reduced tidal
damping or increased tidal amplification. As a result, the wave celerity increases. What happens
to the Wave-type Number (siné€) is not so clear. We can see form the Phase lag equation (Eq.
2.88) that the increase in both ¢ and & counteract each other, leading to a minor change in ¢, if
at all. We also see in the Geometry-tide relation that the deepening and the reduced damping
(or increased amplification) counteract each other, which leads to a more or less unchanged tidal
range to tidal excursion ratio, suggesting that the tidal velocity amplitude remains more or less
the same. Both the tidal range and the tidal excursions, however, will amplify in upstream
direction.

Bank stabilisation affects the storage width ratio. Fixed banks and closure of tidal creeks
and inlets, often in combination with dredging, leads to less storage on banks on tidal flats and
in creeks resulting in a value of rS close to unity. The celerity equation shows that a reduced
value of rg directly leads to a higher velocity of propagation, being inversely proportional to the
root of rg. As a second order effect, the celerity increases even further because the convergence
term in (3.58) increases compared to the friction term. A higher wave celerity in the Damping
equation leads to less damping and more amplification. The Phase Lag equation again provides
negative feedback. An increased wave celerity and increased tidal damping counteract each other
in the Phase Lag equation, yielding a more or less constant phase lag. In the Scaling equation
the celerity increases with the root of rg, so the tidal velocity amplitude (and hence the tidal
excursion) is expected to increase at a similar rate. So in conclusion, bank stabilisation leads to
higher tidal velocity, higher wave celerity and a longer tidal excursion.

Constrictions primarily have local influence. A constriction imposed by bank stabilisation,
as is the case for instance in the Schelde near the city of Vlissingen (Flushing), leads to channel
deepening, while maintaining the cross-sectional area. This is mainly a local effect that does not
have a noticeable impact on the overall hydraulic behaviour. Canalisation has a larger impact.
Besides affecting the storage width ratio, it may also change the convergence, as happened with
the Rotterdam waterway. In canals with a long convergence length, the Wave-type number will
approach unity (progressive wave), leading to tidal damping and a strong tidal velocity gradient.
Construction of harbours on tidal channels will lead to more storage, reduced wave propagation
and more tidal damping. In principle, the loss of storage width caused by dredging and vertical
walls can be compensated by the gain in storage through harbour construction.

The possible impact of sea level rise is a topical issue. Over the coming century the rate
of sea level rise could be in the order of 0.5 m, but it could also be more. Let us assume that
sea level rise will be accompanied by the raising of estuary banks, and hence loss of storage
width. This implies that sea level rise will be much the same as a combination of deepening
and storage width reduction. On top of that, sea level rise may increase the tidal range at the
downstream boundary, particularly in estuaries that have a shallow sill near the mouth (such as
the Incomati). The combination of these effects, which strengthen each other, leads to a higher
wave celerity, more tidal amplification, and a larger tidal excursion. So on top of the sea level
rise, people living along an estuary will have to reckon with a larger tidal range (so higher HW)
and a shorter travel time of the tidal wave. How much this effect will be depends strongly on
the characteristics of the estuary. Because of the non-linearity of the Damping equation, the
reaction of the estuary system very much depends on the values of the hydraulic parameters.
With a simple spreadsheet model however, the combination of the equations presented in Table
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3.3 can provide good indications of what should be expected if certain changes are made to the
geometry and the hydrological boundary conditions of an estuary.

Finally, there is the effect of hydrology and climate. We have seen that the river discharge
affects the hydraulics of the estuary, particularly the tidal damping and the wave celerity in
the riverine part of the estuary. These effects are not as dramatic as the ones discussed above.
However, the impact of climate and hydrology on salinity, water quality and ecosystem behaviour
can be substantial, possibly leading to drastic changes in overall system behaviour. These effects
will be discussed further on in Chapter 4.
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Chapter 4

MIXING IN ALLUVIAL ESTUARIES

This chapter deals with how salt and fresh water mix and how we can describe this process with
analytical equations.

In well-mixed estuaries salinity penetrates through the process of mixing while the river dis-
charge flushes the salinity back towards the sea. This struggle for dominance can have two
winners: the mixing, and in that case we observe an increasing salinity over time; or the flushing
by the river flow, and in that case we see the estuary water become fresher. When the two mech-
anisms tie, we have a steady state situation where the salinity remains constant over time. What
remains is a longitudinal gradient of the salinity, gradually diminishing in upstream direction
from sea salinity at the mouth to fresh water at the toe of the salt intrusion curve.

There are several mixing mechanisms that vary in importance depending on: the shape of the
estuary, the location, the level of stratification, the density, and the strength of the tide. One can
distinguish different types of mixing, such as: mixing by turbulence, mixing by tidal shear, mixing
by residual currents, mixing by trapping and density driven mixing. These mechanisms will be
described in the following sections. All these mixing mechanisms together drive longitudinal
dispersion of salinity, which can be decomposed into many smaller constituting fluxes. There
are different methods for flux decomposition, but we shall see that this approach does not really
lead to practical results. In order to obtain a predictive model, we require a predictive equation
for what is called the effective longitudinal dispersion. This one-dimensional predictive equation
will be derived and illustrated by empirical data. A general equation that integrates all mixing
processes will be presented. But first let’s be clear about the terminology: what is dispersion,
what is effective longitudinal dispersion and how does it relate to mixing?

4.1 What is dispersion and how does it relate to mixing?

Dispersion is a mathematical artefact. Dispersion follows from averaging over time when we
follow a water particle. If we follow a water particle over - let's say - a day, then we can
see the distance that the particle travelled between the beginning and the end of the day (the
distance covered). This is the average distance travelled by the water particle. If the movement
is described by a sine function and we average over the tidal period, then average - the distance
travelled - is zero. But we can also look at all the places the where the particle has been. The
water particle may well have diverted from the direct trajectory linking the start and finish
position. During this trajectory if has been in contact with other particles and it may have
exchanged diluted substances. If the water is of homogeneous density (or salt concentration)
then the water does not change its properties during its diversions, but if the water had a
variable density, then the diversion would have allowed the water to mix with other particles,
which would have changed its density or salt concentration. In the latter case the density is
different from what it would have been if the particle had travelled in a straight line connecting
start and finish. The difference between the straight line (which we call advection) and the actual
detour we call the dispersion of water particles. It may be clear that if we integrate the water
movement over a very short time step, say a few seconds, that the dispersion is very small: over
a very small distance, there is no diversion. But if we integrate over a longer period, say a day
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or a week, then the straight line connecting start to finish is probably a bad indicator of the
trajectory that the water particle actually covered. So dispersion is completely scale dependent
and, in fact, an artefact of our averaging.

The question remains: Is dispersion a real physical mechanism, or is it just a mathematical
invention? Of course, dispersion is real. And if there is a density (or concentration) gradient,
dispersion leads to mixing. But how can we make a mathematical artefact into something
physical? The answer to this question is the correct scale over which we average. If we select
the physically relevant temporal or spatial scale, then the dispersion becomes a physical process
connected to that scale. In tidal mixing, the proper temporal scale is the tidal period 7. In
a l-dimensional situation with no river discharge, the water particle starts its travel at LWS
moving upstream over a tidal excursion E. At HWS it starts to flow back ending up in the
starting position after one tidal cycle. If there is a river discharge, then the average distance the
water particle travelled during the tidal period is Q7T /A, which is the advective transport, but
it covered quite some more ground. It travelled over a distance E up and down the estuary, and
probably also moved laterally and vertically through the cross-section. In the process it had the
opportunity to mix with particles of different density and as a result, the density of the water
would have changed as a result of the circulations. This is what we call the dispersive transport.
Under the influence of a density gradient, exchange of water particles (mixing) leads to a transport
of dissolved substances in the direction of the gradient (moving from high concentration to low
concentration).

So the proper temporal and spatial scales of tidal mixing in alluvial estuaries are the tidal
period T and the tidal excursion E. The tidal excursion is the mixing length of the longitudinal
mixing process. The width - or half the width as some say - is the spatial scale of the lateral
mixing, and the depth is the scale of the vertical mixing. If we consider dispersion at these
temporal and spatial scales, then the dispersion has physical meaning and we may be able to
develop a predictive equation that connects this dispersion to physically meaningful parameters.

Finally, there is the term diffusion. Mathematically diffusion and dispersion are the same
thing, but physically they are not. The term diffusion is used for molecular processes (Brownian
motion) we also find in stagnant water. Transport by diffusion is orders of magnitude smaller
than the process of dispersion that we see in moving water under tidal influence. On top of this,
tidal dispersion is much larger than dispersion in unidirectional flow, partly because the water
moves up and down with the tide, which stirs the water in a physical sense, but also because
of the strong density gradients that are present in tidal waters. As a result, the combination
of different mixing mechanisms in estuaries is more complex than in rivers or canals and we
can identify different types of mixing. In the next section we shall elaborate on these different
mechanisms.

4.2 Types of mixing, their relative importance and inter-
action

Mixing is the mechanism through which salt travels upstream. Every tidal cycle, on the flood
tide, an amount of salt water enters the estuary, but if that amount of water would not mix, then
the same water would again leave the estuary on the ebb tide without any salinity penetrating
the estuary. We shall see that if we want to analyse mixing in detail by looking at all the
different mixing mechanisms at their particular spatial and temporal scales, the picture becomes
very fuzzy. Several authors have tried to split up the mixing process into smaller components
resulting from spatial and temporal averaging, but without enhancing the insight into how mixing
works. Jay et al. (1997) conclude that the track record of determining these fluxes is discouraging,
among others because of the low accuracy that can be reached in subtracting fluxes. Others have
looked at the driving mechanisms of mixing and what this teaches us about the main hydraulic
parameters that influence mixing. Although this approach may enhance our insight, to date, it
has failed to come up with a predictive method to forecast the effective dispersion. The most
important reason being that we do not know how these individual mechanisms interact and how
they provide feedback on each other.

In analogy with Sivapalan et al. (2003), we may call this approach, where we try to build-

Hubert H. G. Savenije



Chapter 4: TYPES OF MIXING, THEIR RELATIVE IMPORTANCE AND INTERACTION 107

up the dispersion from analysing the detailed mixing processes, a reductionist or “upward”
approach. Like in hydrology, this reductionist approach, although physically appealing, does not
generate workable models that predict system behaviour. The reasons lie partly in a phenomenon
called ’equifinality’ and partly in the fact that these individual components do not function
independently but interact according to certain laws of “self-organisation”. In tidal dispersion
similar processes are at work. Therefore it is worthwhile to look at the concept of equifinality
and self-organisation in somewhat more detail.

The concept of equifinality is notorious in hydrology. It was introduced by Beven (1993)
to describe the fact that distributed rainfall-runoff models may perform well, but often for the
wrong reasons. Distributed physically based rainfall-runoff models use large sets of spatially
distributed parameters. It appears that the same hydrological behaviour can be simulated ad-
equately by a sheer infinite combination of parameters, which often are not even close to their
expected value. As a result, these complex hydrological models cannot do much more than mimic
hydrological behaviour, but their predictive value, to forecast what would happen if we changed
something in the land-use of the catchment, is low. At first sight this is a disappointing result.
It implies that a purely physically based approach of looking at sub-processes at detailed scale,
and subsequently scaling these up to the larger scale, does not yield satisfactory results. On
the other hand, equifinality is an indication of the existence of a physical law that apparently
translates a plethora of detailed processes (in a strongly heterogeneous environment) into consis-
tent system functioning. As a result, Savenije (2001a) called “equifinality, a blessing in disguise”.
Equifinality is the reason why relatively simple hydrological laws exist, which are able to describe
hydrological processes under highly variable conditions, in different physical environments and in
far from homogeneous situations. Coming to grips with the underlying physical law that govern
equifinality is one of the biggest challenges in hydrology. And the same may be true for mixing
in estuaries.

The main question is: what causes equifinality? One important cause is that hydrology is a
complex system of interacting processes that provide feedback on each other while attenuating
extremes. The physical process underlying this is entropy. To say it popularly, entropy does
not like extremes. The Second Law of thermodynamics implies that average behaviour becomes
overwhelmingly likely in a very large system, implying that exceptions will no longer be observable
in the output signal of large systems. In the end all energy is transferred into heat. Within a
large system, this energy is dissipated as gradually as possible.

A watershed is a large complex system, and so is an alluvial estuary. Just like an alluvial
estuary, a watershed shapes the medium through which the water flows. Erosion, deposition and
biological activity are the main shaping forces, but the underlying physical law is the maximi-
sation of entropy driving self-organisation in a way that energy is dissipated as homogeneously
as possible. Friction is the most important force that translates energy into heat. Different
processes interact to spread the energy smoothly over the water trajectory. If one process is
over-loaded it triggers another. The feedback between these processes results in an overall sys-
tem performance obeying a physical law at a higher level of aggregation, and there are many
ways that this behaviour can be reached.

Mixing works the same way. Mixing is spreading of energy. If one mixing mechanisms is
under-performing, another takes over; not because they communicate, but because the physical
processes that shape the geometry, and that drive the mixing processes, are connected by the
second law of thermodynamics. Hence there are feedback mechanisms that lead to efficient and
gradual dissipation of mixing energy. The law to describe this overall mixing behaviour still has
to be derived, but in this chapter a formula will be presented (Van der Burgh’s equation) that
comes very close to it, judging from its excellent performance and closeness to the theoretical
knowledge available to date.

Following the analogy of Sivapalan, Van der Burgh’s method is a “downward” approach,
which is mainly empirical and based on what the data “tell us”. We observe certain system
behaviour, we derive an equation that describes it and we relate the key parameters of the
equation to the physical parameters that we know are the main drivers of the process. This is
the way that many physical laws have been discovered: the Gas law, Darcy’s law, Manning’s
law, Newton’s law of gravity, etc. There is nothing wrong with it. The only problem is that we
feel uncomfortable if we cannot make the connection between what we observe at a small scale
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and what we observe at the aggregated system-scale. We feel dissatisfied, as with the magician
who just fooled us into believing that the girl has been cut into two and we have no clue how the
trick works. At the same time it triggers our curiosity. Many physical scientists are still trying
to work out how gravity works. Yet nobody contests Newton’s law describing it.

It is clear that for an empirically derived physical law to be credible, it has to be 1) based on
solid empirical evidence in a wide range of situations, 2) consistent with other certified physical
laws, 3) based on the dominant physical drivers that we know, and 4) connected to the physical
processes we observe at smaller scales. The last condition implies that we bring the “downward”
and “upward” approach together, similarly to what is advocated by Sivapalan. So let us look
at the mixing mechanisms and at what drives them. Although detailed study of the mixing
processes may not be the right way to understand system performance, we have to understand
them to find the middle ground between the downward and the upward approach.

There is virtually no limit to the number of mixing processes that can be identified. Fischer
et al. (1979) separated the small-scale turbulent diffusion (periodicity less than a few minutes)
from the larger scale advective processes, although the separation between the two is arbitrary.
Turbulence essentially is the mechanism that transfers the friction from the estuary/river bottom
into the body of the flowing water. Gravity works on all water particles, but the friction only along
the interface between land and water. The sheer stress exercised on the interface is transferred
into the fluid by viscous interaction and turbulent eddies that dissipate energy within the fluid.
This causes mixing by turbulent eddies at spatial scales of a few meters and time scales of less
than a few minutes, but also interactions at larger scales. The flow can be considered to exist
of different streamlines that flow in different directions and at different velocities. There is a
shear stress exercised between these streamlines, which we call tidal shear. Where streamlines
interact, cross-over, or meet to exchange fluid, we talk of advective dispersion. An essential
difference between a river and an estuary is that in an estuary the magnitude, the direction and
even the existence of these streamlines is continuously changing over time and space, as a result
of tidal forcing. The direction of the flow lines in an estuary is seldom parallel to the estuary
axis, but is shearing between flood and ebb channels. This makes the mixing highly dynamic.

Besides tidal-forced mixing there is also mixing by wind and by the river. Hence, we can
distinguish three main driving forces for mixing:

e The wind that drives both vertical and horizontal circulation. The vertical circulation is
driven by wind shear inducing a surface current of relatively fresh water and a water level
slope in the direction of the wind, while the surface slope triggers a relatively saline return
flow close to the bottom (see Fig. 4.1). Mixing occurs along the interface between these
two currents and through upwelling of relatively saline water from the bottom. The wind
also can cause horizontal circulation depending on the shape of the estuary. Particularly
irregular estuaries, such as Rias, can experience net circulation over shallow bays due to
wind (see Fischer et al., 1979). Although in lakes and coastal lagoons wind-driven mixing
can be dominant, in alluvial estuaries this mixing mechanism is considered less important
than the following two.

e The river provides potential energy with buoyant fresh water driving vertical gravitational
circulation. Gravitational circulation is an important mechanism in the part of the estuary
where the longitudinal salinity gradient is largest. In estuaries with a strong funnel shape
(and hence a dome-shaped salt intrusion curve) this region is located in the central part
of the salt intrusion length. In the downstream part of these estuaries, where the salinity
gradient is small, tide-driven mixing is dominant. In narrow estuaries, with a recession-
shaped salt intrusion curve and a rather constant salinity gradient, gravitational circulation
is the main mixing mechanism throughout.

e The tide provides kinetic energy to the estuary that drive the mixing of saline and fresh
water. The tide rocks the estuary water back and forth and dissipates tidal energy through
mixing. The tide generates different types of mixing: 1) turbulent mixing at small spatial
and temporal scales, 2) tidal shear between streamlines with different velocities; 3) spring-
neap interaction; 4) trapping of water on tidal flats and in dead ends; 5) residual currents
in the cross-section; 6) residual currents over tidal flats and shallows; 7) exchange between
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ebb and flood channels that meet and mix at cross-over points. The latter mechanism is
dominant in the downstream part of estuaries with a dome-shaped salt intrusion curve.

c
Windv > / Set-up z

Set-downz | — - @

Figure 4.1: Wind-driven vertical circulation.

We saw earlier, in Chapter 1, that the balance between the potential energy difference and the
tidal kinetic energy is reflected in the Estuarine Richardson number Np (introduced by Fischer,
1972), which is represented here:

_ BpghQ,T

N = p v: P
Hence the Estuarine Richardson number is a measure for the relative importance of gravitational
circulation compared to tidal mixing. The ultimate form of gravitational circulation is the saline
wedge, which corresponds with a high Estuarine Richardson number.

In the following sections we shall discuss the mixing by the tide and by the density difference in
more detail. We shall pay no further attention to wind-driven mixing and concentrate on the main
mechanisms. Gravitational circulation and mixing by tidal shear have been well documented in
the literature. These mechanisms will be briefly summarised. Still poorly known are the mixing
mechanisms by tidal pumping and residual circulation. Here we shall try to explore new terrain.

(4.1)

4.3 Gravitational circulation

Hansen and Rattray (1965) started a discussion on which of the two mechanisms (density driven
or tide driven) is dominant in a certain estuary. Their classification method makes use of the pa-
rameter v reflecting the relative importance of tide driven dispersion versus the total dispersion.
Several researchers spent time on investigating which of the two is the dominant mechanism
in certain estuaries. Smith (1980), who called density driven dispersion buoyancy driven dis-
persion, stated that in wide estuaries buoyancy effects are dominant. West and Broyd (1981)
confirmed this and concluded that transverse oscillatory (i.e. tide driven) shear mechanisms
dominated for narrow, shallow estuaries; whereas transverse gravitational (i.e. density driven)
shear mechanisms dominated in wide estuaries.

Here we come to a different conclusion. Gravitational circulation is dependent on the longi-
tudinal salinity gradient and is driven by the moment M per unit of volume that results from the
two opposed hydrostatic forces (of the fresher upstream section and the more saline downstream
section) that are equal in magnitude but do not work along the same line of action (see Fig. 2.2).
(2.32) that describes the moment exercised on the fluid is represented here:

M= L0

= 1550 gh? (4.2)

We see that the longitudinal salinity gradient is modest in wide estuaries because wide estuaries
(with a short convergence length) have a dome-shaped intrusion curve, which has a very small
salinity gradient in the wider part of the estuary. Only as the estuary narrows does the salin-
ity gradient become stronger. The observations by earlier researchers are often biased by two
shortcomings. The first is that much work has been done on the basis of laboratory flumes or

Version 2.6



110 SALINITY AND TIDES IN ALLUVIAL ESTUARIES

mathematical models that assume constant width (e.g. Hansen and Rattray, 1965). These results
are of limited use in real estuaries with converging banks. The second is that if observations were
made in real estuaries, they were merely done in selected cross-sections of the estuary (often only
one), which may not be representative at all for the overall longitudinal dispersion

Instead we see that gravitational circulation is dominant in near prismatic estuaries (with
a long convergence length), such as the Limpopo, the Chao Phya or the Rotterdam Waterway,
experiencing a steep salinity gradient, but which are generally narrow compared to estuaries with
a short convergence length.

The apparent paradox between what e.g. Smith (1980) observed (that gravitational circula-
tion is larger in wide estuaries) and what is stated here can be explained if we distinguish between
width and convergence. An estuary with a short convergence length is wide at the mouth. If
we look at the estuary from the upstream end, then the width increases gradually from the river
width to the sea. The shorter the convergence length, the wider the estuary becomes. Because
the tidal influence in alluvial estuaries always exceeds a quarter of the tidal wave length, which
is in the order of 100 km or more, estuaries with a short convergence length are always wide.
Similarly estuaries with a long convergence length are generally narrow, having a width not much
larger than the river width. We saw that estuaries with a short convergence length (i.e. wide es-
tuaries) are dominated by tidal mixing, and estuaries with a long convergence length (i.e. narrow
estuaries) by gravitational circulation. In the wider part of the estuary the salinity gradient is
small and hence the gravitational circulation is small. But if there is a salinity gradient then we
can indeed conclude that the wider an estuary is, the more powerful the gravitational circulation.

Fischer et al. (1979) observed that the density gradient drives lateral mixing rather than
vertical mixing, as a result of the varying depth over the cross-section. Because estuaries are
much wider than deep, lateral gravitational circulation is much more important than vertical
circulation. Overall effective longitudinal dispersion by gravitation circulation D, according to
Fischer, is proportional to the width squared and the depth to the sixth power:

990\’ 6 2

Hence we see that this gravitational dispersion is both a function of the width and the salinity
gradient. Both should be significant for this type of dispersion to be dominant. An estuary that
is wide, but has no salinity gradient will not experience much gravitational circulation.

Fischer concludes by saying that although we have started to understand the mechanisms at
work in tidal and gravitational mixing, we must be very cautious to apply formulas that have been
derived under laboratory conditions or on the basis of spot observations in real estuaries. “We
have given several formulas for estimating the value of the longitudinal dispersion coefficient, but
each one has been based on an analysis of one mechanism at the neglect of others”. It is especially
interesting to find out how these mechanisms interact. One of the few papers that deal with the
combined effect of gravitational circulation and tidal dynamics is by Mccarthy (1993), which will
be briefly presented in the next section where we discuss residual circulation.

4.4 Mixing by the tide

We saw that the tide generates different types of mixing which we shall describe in somewhat
more detail below.

Turbulent mixing is the weakest of the mechanisms occurring at small spatial (a few meters)
and temporal scales (a few minutes). Fischer et al. (1979) consider it inferior to the other tide
driven mechanisms that can be classified as advective mixing. The latter results from water
flowing in streamlines that move at different velocities, in different directions and that vary over
time. These streamlines interact and exchange fluid. A practical distinction between turbulent
and advective mixing is that a three-dimensional hydraulic model is able to model the salt fluxes
resulting from advective dispersion by the combination of the velocity field with the salinity field.
The turbulent dispersion is imposed through the eddy diffusivity of turbulent flow that these
models use. Hence a good 3-dimensional hydraulic model should in principle be able to simulate
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tidal mixing adequately. But because of schematisations implicit in most 3-D models, this is
unfortunately not yet the case.

Uncles and Stephens (1996) emphasised the importance of spring-neap interaction (Un-
cles and Stephens, 1996). During neap tide, estuaries tend to be more stratified, as the Estuarine
Richardson number is larger. The strength of tidally driven mixing may vary significantly be-
tween spring and neap tides (Jay and Smith, 1990b). The transition from neap to spring tide
can generate significant mixing.

Schijf and Schonfeld (1953) introduced the concept of tidal trapping. Tidal trapping results
from the phase difference between the main estuary branch and a dead-end tidal branch, bay or
tidal flat. In a dead-end branch slack occurs at HW, whereas the water in the estuary is still
flowing upstream at HW. Between HW and HWS the water level drops and the dead-end branch
already starts emptying while the estuary still flows upstream with relatively saline water. Hence
a tidal flat discharges relatively fresh water into the flood flow. In estuaries with an irregular
topography trapping can be an important mechanism. Because trapping occurs only along the
sides of the estuary, its relative importance is less in very wide estuaries. The typical length scale
of tidal trapping is the tidal excursion FE.

A phenomenon receiving more attention in recent years is residual circulation in the
cross-section. Unfortunately, also here, most of the research has been done on estuaries with
constant cross-section and 2-D vertical mathematical models (e.g. Li and O’Donnell (1997)),
or on observations in a single cross-section (e.g Turrell et al., 1996; Jay and Smith, 1990a,b;
Stacey et al., 2001). Mccarthy (1993) is an exception. He presented one of the very few papers
on residual circulation generated by the combined effect of tide and gravitational circulation in
an estuary with exponentially varying width. He used a 2-D vertical model and perturbation
analysis to identify the mixing mechanisms that combine into longitudinal dispersion. In the
estuary with exponentially varying width, McCarthy indeed obtained a dome-shaped intrusion
curve and hence a very slight density gradient near the mouth. He concluded that density
driven mixing is weak at the estuary mouth and tidal induced landward buoyancy transport
is dominant. Further inland, the density driven mixing takes over to counteract the seaward
Lagrangean advection of salt. The density driven mixing is a function of the salinity gradient,
whereas the tide driven mixing is rather a function of the salinity and the width.

Finally there is the type of residual circulation not considered by (Mccarthy, 1993), which
Fischer et al. (1979) call tidal pumping. It is partly the result of an irregular topography (as
is prominent in Rias but not in alluvial estuaries) and partly of the existence of separate ebb
and flood channels that have cross-over points. The latter is a dominant mechanism in the wider
part of funnel-shaped estuaries and is discussed in the next section.

4.5 Residual circulation through flood and ebb channels

Strongly funnel shaped estuaries develop separate flood and ebb channels. The Schelde presented
in Fig. 4.2 is a good example, but similar patterns can be observed in other funnel-shaped
estuaries such as the Pungue, the Columbia and the Thames. In the flood channel the amplitude
of the landward tidal velocity is about 20% larger than in the ebb channel. Also the flood channel
is about 20% shorter than the ebb channel. As a result, on the incoming tide, the relatively saline
water flowing through the flood channel arrives earlier at the cross-over point than the relatively
fresh water in the ebb channel. On the ebb tide, the amplitude of the tidal velocity in the ebb
channel is substantially higher than in the flood channel, about 40%. Although the ebb channel
is 20% longer than the flood channel, the relatively fresh water flowing through the ebb channel
reaches the cross-over point earlier than the relatively saline water ebbing through the flood
channel.

In the following a relation is derived for the salt dispersion by this type of residual circulation
based on a box model, see Fig. 4.3. The box model represents one ebb-flood channel loop of
length L.;. We assume that in the flood channel the transfer of salt is Lagrangean with little
mixing (since at the mouth the longitudinal salinity gradient is small and there is no significant
connection between the ebb and flood channel). Through the flood channel, over a tidal cycle, a
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Figure 4.2: Flood and ebb channels in the Schelde.

salt flux F is conveyed to the next cell equal to:

E Av
Fy = SOA!TT (4.4)

where Sy is the salinity at the estuary mouth, Ay is the cross-sectional area of the flood channel,
E is the tidal excursion, T is the tidal period, and e, = Av/v is the relative difference of the
tidal velocity amplitude between the flood and ebb currents in the flood channel, which is the
tidal pumping efficiency. In order to close the salt balance, assuming a steady state situation,
this flux should be counteracted by the salt flux F, in downstream direction through the ebb
channel: A
v

Fo=-5 (AITT - Qf) (4.5)
where @ is the fresh water discharge, which is a scalar with a positive value. The sum of these
fluxes should be zero, yielding:

EA
(81— SO)A,TTU =-Qs5 (4.6)
or oS EA
v
FpLesArp— = QS (4.7)

Because the positive x-axis points upstream, the salinity gradient is negative.
We can compare (4.7) to the general steady state salt dispersion equation:

oS
DA— =-Q¢S 4.8
o~ QS (4.8)
where D is the longitudinal effective tidal average dispersion coefficient. The derivation of this
equation is presented in detail in the next chapter (equation (5.16)), but is merely represented
here. If we compare (4.7) and (4.8) we immediately see the expression for D.y, the effective tidal
average dispersion coefficient resulting from residual circulation in the ebb-flood channel system:

E
D.s = _T_Lef = 0.5epiLef (4.9)
This is a very straightforward and simple result. It implies that salt intrusion due to residual
circulation between ebb and flood channels is proportional to: 1) the length of ebb-flood inter-
action loop, 2) the tidal excursion, and 3) a tidal pumping efficiency Av/v. The ratio of Ay/A
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Figure 4.3: Box model for ebb-flood channel dispersion.

may be assumed to be close to 0.5. A possible deviation from 0.5 can be included in the pumping
efficiency e,.

Relation (4.9) was tested by Nguyen et al. (2008b) using a simple Lagrangean model where
mixing only takes place at the cross-over points. The model shows that in the most downstream
loop pure seawater fills the flood channel, while mixed, somewhat fresher, water flows down the
ebb channel. In the second loop the same happens, resulting in a decreasing salinity following
a ’stair-case’ pattern (see Figure 4.4). The intrusion follows a dome-shape. We also see that
the longer the loop length, the stronger the dome-shape is. If the loop length and the tidal
pumping efficiency is increased the longitudinal dispersion increases proportionally, in agreement
with (4.9). Subsequently, we studied the relation between the loop length and the estuary
geometry, the loop length being a crucial parameter that appears to become smaller as the
estuary becomes narrower. Figure 4.2 presents an illustration of the flood-ebb channel pattern
in the Schelde estuary. The following approach was followed. Since the loop length scales at
the width convergence b, the dimensionless ratio of L.y to b was analysed. It appears that there
is a certain width at which separate ebb and flood channels no longer develop. This width By,
depends on the width to depth ratio of a stable channel, so it is logical to assume that there is a
fixed ratio of By, /h that forms the threshold for separate ebb and flood channels to develop. In
the Schelde and the Columbia this ratio lies at about 100. The values of By, in the Schelde and
Columbia are both about 1000 m, the average depth in both estuaries being about 10 m. Now
the geometric relation sought should be a relation between the loop length and the width at the
cross-over point between two loops. One can see the analogy with a standing wave of which the
nodes are located at the constriction point where the ebb and flood currents cross-over. The
width of the constrictions and the angle of the banks determine the space within which the sinus
wave can develop. Fig. 4.5 shows a relation between L.;/b and B/Bj for the Schelde and
the Columbia. The points of both estuaries fit the same pattern. The equation describing this
relation is based on the equation derived for the effective longitudinal dispersion presented in
Section 4.8.

Because near the mouth of a funnel shaped estuary the salinity gradient is very small, the
dominant mechanism near the mouth is the residual circulation by ebb-flood channel interaction.
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Figure 4.4: Lagrangean model for ebb-flood channel interaction considering different pumping
efficiencies (ep).

So near the mouth of funnel-shaped estuaries the dispersion by the ebb-flood channel interaction
may be assumed to be equal to the effective longitudinal dispersion. We saw that the dispersion
generated by this mechanism is proportional to the length of the ebb-flood channel loop. As a
result, the loop length L.y should obey a similar equation as the effective longitudinal dispersion
presented in (4.36). The equation, hence has to be of the following type:

L, B
b’ =ag (1 - BL (E" — 1)) (4.10)
The condition that L.y = 0 at B = By, yields an expression for 31, resulting into:
Ley B, By—-B 1-B./B
- 1—( —=£ i —_— 4.11
Leo(1- (5255 0)) = (orm (1)

This equation indeed fits the data points very well, as we can see in Figure 4.5. It yields a
value for ay of 0.5. In view of the straightforward analysis made the result looks surprisingly
accurate. The good fit is a confirmation of the adequacy of the box model and the assumption
that ebb-flood channel interaction is the main mechanism in the lower part of funnel-shaped
estuaries and it supports the validity of the equation for the effective longitudinal dispersion
equation. However, certainly for the time being, we should consider (4.11) as a result obtained
by curve fitting rather than as a physical law.

The resulting equation for the dispersion generated by the residual circulation in ebb and
flood channels then reads:

_ ep Eb (1 — By /By exp(z/b)
Deg =27 ( B /B, (4.12)

This equation is only valid if B > By. If B < By, then Dy = 0. If B > By, we see from (4.12)
that at z = 0 the dispersion due to residual circulation equals e, Eb/(4T). This is a surprisingly
simple result.
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In summary, we have seen that in funnel-shaped estuaries ebb and flood channels occur if the
estuary is wide enough for these channels to develop. In the Schelde and Columbia this happens
downstream from the point where the width to depth ratio is about 100. Downstream from this
point, the residual circulation between ebb and flood channels becomes a dominant mechanism
(if the salinity gradient is small). The mixing by this mechanism strongly depends on the estuary
width, which forces the loop length. The effective longitudinal dispersion generated by the flood-
ebb channel interaction is directly proportional to: the loop length, the tidal excursion and the
efficiency of the tidal pumping.

Being such a dominant mechanism, it is surprising that so little research has been done on
this type of circulation. There may be a number of reasons for this apparent lack of knowledge:

1. To study this mechanism in the field implies a major operation. A survey would involve a
dense network of monitoring points and have to stretch over a considerable period of time
to monitor the spring-neap interaction.

2. Three-dimensional hydraulic models can reproduce the mixing by flood and ebb-channel
interaction. There does not appear to be a need for understanding how the mechanism
works, if our models can mimic it.

3. The theoretical research on mixing is still too much focussed on 2-D mathematical modelling
and analysis in a single cross-section. Or as Jay et al. (1997) put it: “estuarine circulation
theory has focused on two-dimensional analyses that treat either vertical or lateral variations
but not both.”

4.6 The decomposition method and why it is not very use-
ful

Another way of differentiating between mechanisms is by decomposing the longitudinal salt flux
through a cross-section into different components. Following the maximum generality scaling
approach, Smith (1980) arrived at four dominant mechanisms for well-mixed estuaries: the
oscillatory vertical shear (earlier described by Bowden, 1967, 1981), the oscillatory transverse
shear (earlier described by Okubo, 1967); the interaction between tidal and buoyancy effects;
and the buoyancy driven steady horizontal circulation. Another approach, originally considered
by Hansen (1965), was followed by many researchers who arrived at a considerable number of
decomposed mixing mechanisms such as: vertical and transverse shear dispersion (West and
Mangat, 1986); transverse net circulation (tide driven, density driven and boundary-induced,
analyzed by Fischer, 1972); vertical net circulation (earlier analyzed by Hansen, 1965); transverse
(and vertical) oscillatory shear (analyzed by Holley et al., 1970); and transverse (and vertical)
gravitational net circulation (West and Broyd, 1981). In Hansen’s approach, the salinity, the
velocity and cross-sectional area are considered to be the sum of a tidal mean value (subscript
0), a tidally varying (subscript 1) and a turbulent value (subscript 2):

s(z,y, z,t) = so(z) + s1(z,t) + sa(z,y, 2, 1) (4.13)
U(z,y,2,t) = Uo(z) + Ur(z,t) + Us(z, y, 2,t) (4.14)
A(z,y,2,t) = Ao(z) + Ay (z,t) (4.15)

The salt flux F' can be defined as:
F = /UsdA (4.16)

The tidal average salt flux can then be decomposed in six terms (Fischer, 1972):
(F) = A()U(]So —+ (A1U1)30 —+ AO(U181> + U()(Alsl) —+ (Al (U]Sl),> + (AU232) (417)

in which (U;s1)’ is the deviation of U;s; from its tidal mean and where the angle brackets denote
a tidal average value.
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Figure 4.5: Relationship between the loop length to convergence length ratio L.;/b and the
dimensionless width B/By,.

Lagrange versus Euler and the importance of Stokes’ drift in the decomposition

The first two terms on the right hand member constitute the advective salt flux caused by the
fresh water discharge Q y. The advective Lagrangean salt transport resulting of the river discharge
AoUysg is not equal to the first term only, which is the Eulerian average salt transport, directed
downstream. Dyer (1973) indicated that the second term, the salt transport by Stokes’ drift,
is part of the Lagrangean transport and follows from the river discharge not being equal to the
Eulerian integral, as the cross-sectional area varies over time. We saw in Section 2.4 that Stokes’
drift is a mathematical artefact of the Eulerian reference frame and not a real mechanism. We can
see how in the decomposition method this may cause problems. We can analyse the importance
of these terms as follows:

2

—Q, = % / AUdt = AT — / Avsin(wt — €)cos(wt)dt (4.18)
T

where @ has received a negative sign because it is directed downstream and A is the amplitude
of the tidal cross-sectional area variation. The harmonics are chosen in correspondence with
the definition for h and U in Chapter 3: (3.30)-(3.32). The first term on the right hand side is
the Eulerian mean discharge which is directed downstream, whereas the second term represents
the Stokes drift, which is directed upstream (the mean Eulerian velocity is negative, pointing
downstream, as we can also see in Figure 2.11). It implies that in absolute terms the Eulerian
discharge should be larger than the Stokes drift by an amount equal to Q ;. We can see that the
Stokes drift is zero for a standing wave (¢=0); since the integral of sin(2a) over 27 is zero. In
that case the Eulerian discharge equals Q. For a progressive wave, however, with € = 7/2, the
harmonics are exactly in phase. The argument of the integral then is -cos2a, of which the integral
is -m. Hence for a progressive wave, the Stokes drift is at its maximum equaling Au = Bnv (in
upstream direction). If we scale the salt transport by this Stokes drift against the Lagrangean salt
transport, then the proportion is nu/hUy (with Uy as the velocity of the fresh water discharge),
which is equal to £/p. ¢ is unity at the point where there is only one moment of slack (point P
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in Fig. 1.6 where U; = v). Near the mouth of a funnel shaped estuary ¢ becomes very small,
smaller than £, and the relative contribution of the Stokes drift to the salt transport becomes
larger, in absolute terms larger than the Lagrangean salt flux. Because the Lagrangean salt flux
remains the same, the Eulerian (downstream) salt transport should increase at the same rate
(their sum being equal to the Lagrangean salt flux). So in an alluvial (positive) estuary, where
e >0, the Stokes drift salt transport is not negligible compared to the Lagrangean salt flux, the
balance between them being the tidal average Eulerian discharge. The worrying thing is that the
Stokes drift salt transport is not a real transport (as we saw in section 2.4), but a mathematical
artefact, which makes this decomposition method tricky.

The usefulness of decomposition

Van de Kreeke and Zimmerman (1990), following the suggestion of Fischer (1972), split-up s,
and U, even further into vertical and transverse components, but neglected tidal variations in
A, leading to 6 components containing: advection, geometry induced dispersion, residual lateral
circulation, vertical density circulation, lateral oscillatory shear and vertical shear. Park and
James (1990), who (after Dyer, 1974) in addition considered the tidal variation, decomposed
the salt flux into 66 components, grouped into an equation of 11 terms. These components
had to be grouped to be able to attribute some physical meaning to them. Jay et al. (1997)
observed: “Little attempt has been made to connect estuarine circulation to the salt fluzes that
must maintain it. The result has been a welter of confusing transport expansions filled with terms
of uncertain meaning”.

Hence, the approach followed in this study is quite different from the decomposition method.
We start with the observed salt fluxes and derive the dispersion from the observed salinity
distribution. This is a '"downward’ approach as discussed in section 4.2. In contrast, the de-
composition method is a reductionist 'upward’ approach that does not yield directly applicable
practical equations, but which in combination with the "downward’ approach can yield insight
into the mechanisms at work. Subsequently we may be able to attribute physical meaning to the
relationships found by 'downward’ analysis. However, there are a number of problems with the
decomposition method:

1. It is done in cross-sections, whereas mixing is a 3-dimensional process that acts mainly in
the longitudinal direction. For observations in a cross-section to have significance, a large
number of cross-sections need to be monitored. Moreover the dominant mixing mechanism
changes from cross-section to cross-section. In one section (for instance in an ebb-channel)
gravitational circulation may be dominant, but in another (for instance in a cross-over point
of a flood and ebb channel) it may be shear by cross-over currents and residual circulation.
So an observation in one cross-section does not tell us much.

2. The relative error that we make if we subtract fluxes can be very large, particularly if
the residual fluxes are small compared to the momentary fluxes. In tidal hydraulics the
momentary fluxes are several orders of magnitude larger than the residual fluxes and hence
the errors in the residual fluxes are often larger than the residual fluxes themselves.

3. It is highly data-intensive. To determine a residual flux in a cross-section one has to
continue monitoring in the cross-section during several tidal periods (also to account for
spring-neap interaction) and sample the entire cross-section at many points over the width
and depth. This is both data-intensive and labour-intensive, and hence expensive.

To investigate which of the many components is the dominant mechanism in a particular estuary
under given hydrological conditions is, at the least, time consuming. Moreover, several scientists
question the usefulness of decomposition and the correctness of linear superposition of mixing
mechanisms. Important mixing processes such as the alternation between different degrees of
stratification or the breaking of internal waves cannot be adequately described by the decom-
position method. Rattray and Dworski (1980) state that the different components are closely
interrelated, and that conclusions to be derived from this method of analysis (such as the relative
importance of vertical and transverse variations to the total flux) depend on the details of the
decomposition, details which are chosen by the analyst. Chatwin and Allen (1985) remark that
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in view of this dependency, the question of whether the transverse or the vertical dispersion is
the most important salt intrusion mechanism may be less fundamental than was once believed,
in that the issue is to some extent prejudged by the method of decomposition chosen.

Jay et al. (1997) observed that much research on the decomposition was done in cross-sections
without consideration for the larger scale salt fluxes that should support the individual mech-
anisms. Moreover, they observed that “the importance of the lateral terms emphasizes the
three-dimensionality of estuarine transport and clearly demonstrate that two-dimensional theory
cannot totally explain transport, even in narrow channelized estuaries” (where the effect of tem-
poral width variation due to the tide is small). Hence the three-dimensional character of mixing
is crucial.

One wonders why researchers have lingered so long on two-dimensional analyses. There are
probably two reasons. One is that much of the research to date started with laboratory flume
analysis and once you are on that track, it may be difficult to explore another. The second reason
may be that most of the hydraulic engineers who ventured into mixing theory started from the
analysis of stratified systems, which were originally studied in 2-D.

The most advanced decomposition method used is by Mccarthy (1993), who integrated the
2-D hydraulic and salt balance equations in an estuary with an exponential shape and found the
resulting fluxes by perturbation analysis. He distinguished five components (with his terminology
between quotes): 1) the landward tide-driven transport (“tidal buoyancy transport”), 2) the
seaward Eulerian (non-tidal) discharge (“Eulerian buoyancy transport”), 3) the landward Stokes
drift (“Stokes buoyancy transport”), 4) the landward “diffusive buoyancy transport”, and 5)
the seaward “variable breadth diffusive transport”. The second and third components (as we
have seen) are opposed and their sum equals the Lagrangean seaward salt flux. The fourth
and fifth components constitute the transport driven by the salinity gradient, representing the
process driven by the gravitational circulation, both vertically and laterally, but mostly laterally
since the width is so much larger than the depth. Although his study did not consider the
important transport mechanism by ebb-flood channel interaction, it clearly illustrated that tide-
driven transport is dominant in the downstream part of estuaries, while density-driven transport
is dominant at the upstream part of the salt intrusion curve. In doing so, he also emphasized the
importance of the width variation and the interconnectedness of lateral, vertical and longitudinal
mixing processes. Had he included the ebb-flood channel interaction, then this would have yielded
a different combination of mixing mechanisms, but still the same amount of net seaward and net
landward fluxes. Hence the inclusion of a new mechanism affects the magnitude of the others.
This is also what happens in the real world. The mixing mechanisms provide feedback on each
other. As a result, for the study of effective longitudinal salt intrusion it is more important to
look at the mixing process as a whole than to look at each of the individual mixing mechanism.

Hence in this book it is not the objective to further study the array of separate processes
involved in dispersion. If dispersion is symbolized by an instrument, then the approach followed
here is to study what the instrument does and what outer effect it has on the salt balance rather
than coming to grips with all the intricacies of its inner functioning. In short, the study focuses
on the apparent functioning of dispersion: how dispersion counteracts the advective downstream
salt transport, as a function of geometry, hydrodynamics and density differences. Dronkers and
Van Os (1981) supported this approach by stating that for most practical purposes, for example
to determine the total salt intrusion length, it is sufficient to know the overall effect of the mixing
processes rather than to understand the individual mechanisms. The analysis of the individual
mixing mechanisms will help our physical understanding of how mixing works, but the addition
of individual mechanisms will not yield a workable equation with which the salt intrusion can be
computed and predicted in a real-life situation.

In the following, therefore, we shall focus on the effective, also called apparent, tidal av-
erage and cross-sectional average longitudinal z-dependent dispersion and how it contributes
to salt intrusion. In the derivation we shall incorporate the insight gained from analysing the
decomposition methods.
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4.7 Longitudinal effective dispersion

The effective dispersion incorporates all the dispersion mechanisms that counteract the advective
salt transport. In a positive estuary where the salinity decreases in upstream direction, these
dispersion mechanisms result in a landward transport of salt. If the dispersive salt transport
is stronger than the advective salt transport then the salinity at a certain location increases
with time; if it is weaker, then the salinity decreases with time. If the dispersive and advective
transports are equally strong, then a tidal-average state of equilibrium occurs.

In the case of equilibrium, with the salinity distribution known, the apparent tidal average
dispersion coefficient D can be computed from (4.8). This approach of determining the effective
horizontal dispersion coefficient on the basis of the steady state conservation of mass equation
was first suggested by Stommel (1953) and later recommended by Bowden (1967). Before using
this method, however, one has to check if a state of (tidal average) equilibrium indeed occurs.

Chatwin and Allen (1985) derived the following conditions under which the use of one-
dimensional mixing models is justified:

1) the estuary should be long compared to the cross-sectional dimensions and the tidal excur-
sion;

2) changes of geometry in the z-direction must be gradual.

Surely in the estuaries under study here, these conditions do not put any serious constraint on the
applicability of one-dimensional mixing models. Dronkers (1982) gave an additional condition
for applying 1-D mixing models, the most important of which is that:

3) the time of averaging (e.g. one tidal period) should be larger than “the time scale of cross-
sectional mixing” which is defined as the average time required for turbulent mixing in the
cross-section.

In very wide estuaries this third condition may require longer averaging times (e.g. several tidal
periods), but in the Schelde, an estuary more than 10 km wide, the condition was amply met,
according to Dronkers (1982). Again this condition does not pose a strict limitation on the
applicability of 1-D mixing models. It may be concluded that if the salt intrusion in an estuary
can be adequately described by a one-dimensional tidal averaged model, then its use is apparently
justified. This is in agreement with the observation by Fischer et al. (1979) that it is better to
consider the one-dimensional tidal average dispersion model as an empirical model, which should
be verified in practise. Fortunately, practice has shown that the domain of applicability of the
1-D model in estuaries is large.

If we follow this approach then the application of the one-dimensional dispersion model
depends on finding a suitable relation for D. Of the different types of relations tried in the
literature, Prandle (1981) gave a good overview. He suggested the following types of relations:

D = Dy (4.19)
D g—i (4.20)
a8\ ?
D x 9z (4.21)
which can be summarized as:
s\ *
D x 9z (4.22)

with k=0, 1, 2, respectively.

As far as theoretical backing is concerned, the first relation (k=0) occurs when the amount
of energy available for mixing is uniformly distributed over the estuary. Such a situation occurs
where the mixing is fully tide driven and where both the tidal range and the tidal excursion
are constant along the estuary (i.e. in an ideal estuary). The second relation (k=1) corresponds
with the case where the mixing is fully density driven and where the dispersion is proportional to
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the moment M, see (4.2), exerted by the two hydrostatic forces shown in Figure 2.3. Hence, the
density driven dispersion is proportional to the salinity gradient. If the density driven dispersion
has a strong lateral component, then Fischer et al. (1979) suggested to use (4.3). This is an
equation type with k=2.

With regard to estuary shape, Prandle (1981) obtained some unexpected results. He showed
that in flumes and in estuaries with almost constant cross-section (Rotterdam Waterway) (4.20)
and (4.21) performed best, but that in estuaries with a pronounced funnel shape, such as the
Thames, the St. Lawrence, the Delaware and the Bristol Channel, very good results were ob-
tained with the simple (4.19).

What is surprising is that some researchers suggested the opposite. Several (among others
West and Broyd, 1981) mentioned that density driven dispersion (k=1) prevails in deep and
wide estuaries and tide driven dispersion (k=0) in narrow and shallow estuaries. This appears
in contradiction with what we found earlier that estuaries with a pronounced funnel shape have
dome-shaped salt intrusion curves, whereas estuaries with almost a constant cross-section have
recession type intrusion curves. Near the mouth of an estuary with a dome type intrusion curve
(being an estuary with a pronounced funnel shape where the mixing process is claimed to be
density driven) hardly any density gradient occurs, and hence hardly any density driven mixing
can occur. One reason for this paradox is that the researchers who studied deep and wide estuaries
with dome shaped intrusion curves and who concluded that the mixing was primarily density
driven, carried out their investigations somewhere in the middle reach of the salt intrusion curve.
So, although they were correct in identifying density driven mixing as the dominant mechanism
in the middle reach of wide estuaries, hardly any density driven mixing occurred in the wider
part, near the mouth, of these estuaries.

So it is more correct to draw another conclusion. A narrow and prismatic estuary like the
Rotterdam Waterway has a high level of stratification and a rather steep (recession-type) salt
intrusion curve. The dominant mixing mechanism is gravitational circulation, which is best
described by (4.20) or (4.21). A wide funnel shaped estuary, such as the Thames, the Delaware
or the Schelde, has a dome-shaped intrusion curve and a small density gradient near the mouth.
In the downstream part of such an estuary the dominant mechanism is tide-driven mixing in the
form of ebb and flood channel interaction (as long as the estuary is wide enough for separate
ebb and flood channels to develop: B/h >100). In the reach where the dome shaped intrusion
curves bends down, and hence the salinity gradient is strong, gravitational circulation becomes
dominant with a strong lateral component.

As a result, the dispersion is highest near the estuary mouth, decreasing in upstream direction.
Because the gravitational circulation is proportional to the density gradient, the gravitational
dispersion reduces with the salinity gradient until it becomes very small near the toe of the
intrusion curve. Beyond the toe of the intrusion curve the dispersion is dominated by turbulent
diffusion, which is small compared to the other mechanisms.

Many researchers, such as Preddy (1954), Kent (1958), Ippen and Harleman (1961), and
Stigter and Siemons (1967), recognised that the effective dispersion is highest near the estuary
mouth and that it decreases upstream to become zero, or virtually zero, near the toe of the salt
intrusion curve. The challenge now is to find a relation that applies well in all estuaries, whether
funnel shaped or of almost uniform cross-section, which is easy to incorporate in a predictive
model and which is physically appealing. More specifically:

a) The relation should be dimensionally sound, with dimensionless coefficients,
b) The dispersion should decrease in upstream direction,
c¢) The dispersion should be large near the mouth of funnel shaped estuaries,

d) The relation should be continuous and easy to apply.

The following relation suggested by Savenije (1986, 1989, 1993a,b) performs well against these

criteria: p
D S
D_o = (S_()) (4.23)
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where K is the dimensionless Van der Burgh’s coefficient (Van der Burgh, 1972) which lies
between zero and unity. This relation has been widely tested and successfully applied in about
20 estuaries world-wide. It is interesting to see that in contrast to Prandle’s relations, summarized
by (4.22), in this equation the salinity is used instead of the salinity gradient.

If we use this simple relation, then a dome shaped intrusion curve (which occurs in wide and
deep estuaries) results in a high value of the dispersion coefficient near the mouth, decreasing
slowly in upstream direction to become zero at the toe of the intrusion curve. In a narrow estu-
ary, where the salinity decreases steeply, the salinity curve has an exponential decline (recession
shape). In an exponential function, the function value is directly proportional to its gradient.
So dS/dz is proportional to S, and the dispersion is still proportional to the salinity gradient to
the power K. This is in agreement with the theory. So (4.23) both applies to tidal driven disper-
sion (particularly ebb-flood channel exchange) and to gravitational circulation. This equation
describes the mixing process well: near the mouth, in the middle and near the toe, and both
in funnel shaped estuaries and in estuaries with a long convergence length. The coefficient K is
obtained through calibration.

Fig. 4.6 illustrates how (4.23) performs in relation to an observed salt intrusion curve in
the Pungue estuary with a dome-shaped intrusion curve. The thick line is a dimensionless salt
intrusion curve S/Sj that fits the observations made on 3 October 1993. The observations at
HWS have been translated half a tidal excursion to the left and the observations at LWS half
a tidal excursion to the right. The dimensionless dispersion curve has been computed with the
steady state salt balance equation (Eq. 4.8), but it also completely corresponds with (4.23). For
the case where K=1, the curves of D/D, and S/S, coincide. So the line indicated by D/D, is
the line that fits the observed effective 1-D tidal average dispersion.

SiSo
D/Do
A HwWS
= = = DtDo
= WS

90

Figure 4.6: Dispersion equation derived from the salt intrusion curve measured in the Pungué
estuary on 3/10/1993.

Finally, the dashed line corresponds with (4.20), and reflects the density driven dispersion.
It is not possible to scale the density driven mixing exactly; the position of the curve is merely
indicative. If we assume that the total dispersion is the sum of the tide driven dispersion and
the density driven dispersion, then the difference between these two curves equals the tide driven
dispersion. It can be seen in Fig. 4.6 that the tide driven dispersion near the mouth is very
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Figure 4.7: Dispersion equation derived from the salt intrusion curve measured in the Maputo
estuary on 29/5/1984.

large due to ebb-flood channel interaction and reduces as the estuary becomes narrower. After
the point where the salinity gradient is at its steepest the density driven mixing becomes more
important. The value of K obtained in this estuary is 0.3, suggesting that tide-driven mixing is
more important than density driven mixing.

Fig. 4.7 shows a similar graph for the Maputo estuary with a bell-shaped intrusion curve.
It is based on observations made on 29 May 1984. Here we also see that tide-driven mixing is
dominant in the wider part of the estuary, but less so as in the strongly funnel-shaped Pungue
estuary. Upstream from the point where the salinity gradient has its maximum, the density
driven mixing is dominant. The Maputo has a trumpet shape with a short convergence length
near the mouth (of 3.5 km) and a longer convergence length upstream (16 km). The inflection
point of the density driven mixing lies exactly at the point where the change of the convergence
length takes place: the upper reach having a more prismatic character and the lower reach a
pronounced funnel shape. The value of K in this estuary is also 0.3, with tide-driven mixing
being more important than density driven mixing.

Fig. 4.8, finally, presents an estuary with a near prismatic channel: The Limpopo, with a
convergence length of 130 km in the upstream reach (and 50 km in the downstream reach). As a
result the intrusion curve has a recession shape, which is an indication of gravitational circulation
being the dominant mechanism. We see that this is indeed the case. Consequently we expect a
higher value of K which is indeed the case K being equal to 0.5.

We see that (4.23) can describe the longitudinal salinity distribution very well in different
types of estuaries. (4.23) has a much wider range of applicability than either one of (4.19)-(4.22).
It can be used to describe tide-driven mixing as well as gravitational mixing and it is a relatively
simple and dimensionally correct formula. In the following we look further into the physical
meaning of (4.23).
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Figure 4.8: Dispersion equation derived from the salt intrusion curve measured in the Limpopo
estuary on 24/7/1994.

4.8 Van der Burgh’s equation

Van der Burgh (1972) developed a purely empirical method on the basis of the effective tidal
average dispersion under equilibrium conditions. He made use of a considerable number of
salinity measurements carried out in the Rotterdam Waterway (excavated in 1868) over a period
of 80 years (1892-1971), the first of which were published in a handwritten document by Canter
Cremers (1905). In addition he used salt measurements carried out in a number of tidal inlets
of the Dutch delta system, including the Schelde. He based his analysis on the steady state
salt balance equation (4.8), and assumed that the HWS and LWS salinities could be obtained
through longitudinal translation over half the tidal excursion, which indeed is correct.

Van der Burgh analysed the salt distributions surveyed in the Rotterdam Waterway over the
period 1905-1971. This is a period over which the channel was deepened several times, so the
data set covers various depths. He observed that the effective dispersion obtained from (4.8)
consistently decreased in upstream direction. Plotting the longitudinal variation of the effective
dispersion against the velocity of the fresh water discharge (see Fig. 5.2), he found a direct
proportionality:

oD

oz
where K is Van der Burgh’s dimensionless coefficient. Here Qs and Uy are positive scalars, so the
minus sign stems from the fact that the dispersion decreases in upstream direction. This relation,
known as Van der Burgh'’s equation, can be shown to be the same as (4.23). Differentiation of
(4.23) with respect to z yields:

= —K% = -KUy (4.24)

K
8D__K&(S) S _ _,Das (4.25)

xS \S) 8z T Soz
It can be directly seen that combination of this equation with the steady state salt balance
equation, (4.8), yields (4.24). This relation is known as Van der Burgh’s equation.
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A major difficulty Van der Burgh had in determining the effective dispersion was that the
exact amount of fresh water discharge in the estuary was not always well known. Although a
good estimate was available of the Rhine discharge on entering The Netherlands (at Lobith), the
division of the water over the many branches was difficult to determine at that time. In addition,
the time required for the salinity distribution in the estuary to adjust to the flow recorded at
Lobith was not known. Van der Burgh used the results of an electro-analogous model of the
Rhine delta to obtain the fresh flows in the estuary. However, the inaccuracy in the methodology
was probably still great, which makes it the more surprising that he came up with this important
relationship.

Van der Burgh named his approach the “advective method”. His method has the advantage
that, for its derivation, it does not require a constant cross-section. Moreover, the relation
between 0D/0x and Uy is dimensionally sound.

4.8.1 The physical meaning of Van der Burgh’s K

It can be shown mathematically that Van der Burgh’s coefficient is a sort of “shape factor”

influencing the shape of the salt intrusion curve. Kranenburg, in a personal communication,

indicated this to the author for a channel of constant cross-section. The application of this

approach to a channel with an exponentially varying cross-section is explored in the following.
Differentiation of (4.8) with respect to z yields:

QsS' = DA'S + D'AS' + DAS" (4.26)

where a single accent indicates the first partial derivative and a double accent the second partial
derivative with respect to x.
Since A'/A = —1/a and D = —(U;S/S"), (4.26) can be elaborated into:

DA’ DS” S SS"
D' =-U; - -— = 14— - — 4.2
Uy A S’ Uy ( + aS’ (S’)Q) (4.27)
Substitution of Van der Burgh’s equation yields:
S SS”
K=1+-%- S (4.28)

The influence of K and a on the shape of the salt intrusion curves can be made clear by scaling.
We scale S by the sea salinity to obtain the dimensionless salinity:

«(6) = Sﬁ (4.29)

where é=z /L. Elaboration of (4.28) then leads to:

(Zf;; —a-k)+ <L (4.30)

'a
where ¢’ is the first derivative of ¢ with respect to £, and ¢” is the second derivative. The left
hand member is the shape-function which is influenced by two terms on the right hand side.
It can be easily seen that the shape function is positive if the curvature ¢” is positive (because
¢/s"* > 0 for all £ on [0,1]).

In the integration of the steady state salt balance equation the boundary condition used is
that ¢’=0 where ¢=0, at the upstream end of the intrusion curve. Since, in a positive estuary,
the gradient of the salinity is negative for all ¢ on [0,1], ¢’ can only become zero at the toe of the
intrusion curve if somewhere within this interval the curvature ¢”, and hence the shape function,
becomes positive. Because the second term of the right hand side of (4.30) is always negative in
a positive estuary (since ¢’ < 0), the curvature can only become positive in the interval [0,1] if
the first term on the right hand side is positive; this is the case when K < 1. Hence there is an
upper limit to the value of K. Since the lower boundary of K is zero, it follows that 0 < K < 1.
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Dome shaped (type 3) intrusion curves have a negative curvature (¢” < 0), at least in the
downstream part of the estuary, and recession shaped (type 1) intrusion curves have a positive
curvature (¢” > 0). The bell shaped (type 2) intrusion curve is a mixture of these two: dome
shaped near the mouth of the estuary and recession shaped at the toe of the intrusion curve.
Hence the left hand side of (4.30) is negative in type 3 estuaries, and positive in type 1 estuaries.
Therefore, dome shaped intrusion curves occur when the term containing K is small with respect
to the absolute value of the term containing L/a (meaning a large value of K and a large value
of L/a) and recession shaped intrusion curves in the opposite case (K is small and L/a is small).
This is interesting since it implies that K and L/a are shape factors influencing the shape of the
salt intrusion curves.

4.8.2 Correspondence with other methods

Van der Burgh’s method has similarities with a number of methods developed by other authors.
Preddy (1954), Kent (1958), Ippen and Harleman (1961), and Stigter and Siemons (1967) already
recognised that the effective dispersion decreased in upstream direction. Mccarthy (1993) clearly
demonstrated how the dispersion decreases in upstream direction, to become zero near the toe
of the salt intrusion curve.

The theory demonstrating the largest similarity with Van der Burgh’s method is that of
Hansen (1965). They limited their theory to the central zone of a narrow estuary of constant
cross-section. In addition, they assumed that the salinity in the central zone would decrease
linearly (no curvature: S”=0) in upstream direction. Both are very strong limitations which
Van der Burgh’s method does not have. On the basis of these strong assumptions, they arrived
at three so-called similarity conditions for the two-dimensional vertical description of velocity
and salinity, being: that the vertical turbulent viscosity and dispersion were constant along the
estuary and that the horizontal tide driven dispersion D, was defined by:

oD, Qy

dr A Us
which is indeed what we would obtained from (4.27) by substitution of a— oo (constant cross-
section) and S”=0 (no curvature).

Moreover, they defined the parameter v by: the fraction of the salt advected seaward with the
river discharge (vUyS) that is balanced by the upstream salt flux associated with tidal dispersion
(D;0S/0zx) only. Consequently, by using the steady state conservation of mass equation for salt
it can be seen that, v equals the ratio of the tide driven dispersion D, to the effective (=total)
dispersion D:

(4.31)

,_Di
- D

Fischer et al. (1979) gave a wider definition of v as the fraction of the total landward transport of
salinity caused by all dispersion mechanisms other than the density driven circulation, meaning
that D, incorporates all dispersion mechanisms other than density driven dispersion. If v =0
then the dispersion is fully density driven; if » =1, the dispersion is driven by other mechanisms.
Thus combination of (4.31) and (4.32) leads to:

oD 1Qy

= 4.
ox v A (4.33)

(4.32)

which is identical to Van der Burgh’s equation for K=1/v. Apparently, in an estuary with con-
stant cross-section and with a salinity distribution without curvature, Van der Burgh’s K=1/v.
In Hansen & Rattray’s definition, Van der Burgh’s coefficient is the proportion of total effective
dispersion to the tide driven dispersion. If K'=1, the dispersion is fully tide driven. If K > 1
the influence of density driven dispersion becomes more pronounced. This is in conflict with the
limits to K earlier found, but one should realize that Hansen & Rattray’s relation was derived
under strongly limiting assumptions such as a constant cross-sectional area and S”=0. In an
exponentially shaped estuary or in an estuary with a non-linear salinity distribution, Hansen &
Rattray’s result would have been different, and K would not necessarily have to be larger than
unity.
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Shaha and Cho (2011) looked at the variability of both K and v along the axis of the Sumjin
River Estuary. They found indeed that K was inversely proportional to v and that v decreased
from almost unity near the mouth to zero near the toe of the intrusion curve, indicating the
transition from tide driven to salinity driven mixing. By differentiation of (4.32) and combination
with (4.33) and the Van der Burgh equation, they showed that:

1 DA ov 1 ov 1098
=y (- grae) =i (0 (5)(552)) .
Clearly this is based on the assumption that (4.33) is correct, which is doubtful in an exponential
estuary. Application of (4.33) in exponential estuaries led to values of K larger than unity, which

is not possible, as we saw. Therefore, Shaha and Cho (2011) modified (4.34) to account for an
exponential shape, resulting in:

o (g me (@) Ga) e

which led to realistic values of K in the Sumjin River estuary (see Figure 3 in Shaha and Cho
(2011)). In a positive estuary both the gradient of S and v are negative. The salinity reduces in
upstream direction and the mixing becomes more gravitationally driven as we move upstream.
The two reduce more or less in parallel. Of course, as a result of the definitions of K and v, both
are limited within the interval [0,1]. The exponential function of v prevents K to become too
large when v approaches zero. We have to realise, though that (4.34) is based on the assumption
of (4.33), and that (4.35) implicitly uses a modification of this assumption. Whether this is
correct needs still to be seen.

For the moment we have to assume that K can be used as a constant value in the range of
the estuary where K matters, which is near the toe of the salt intrusion.

4.9 General equation for longitudinal dispersion

Integration of Van der Burgh’s equation assuming K to be constant and taking into account the
exponential variation of the cross-sectional area yields the following equation:

DBO =1-p (exp (z) — 1) (4.36)
where: KaQ,
B = Doy (4.37)

where D is the dispersion and the estuary mouth, Ag is the cross-sectional area at the estuary
mouth, a is the convergence length and Q; is the fresh water discharge. This is a simple equation
relating the longitudinal effective dispersion to the longitudinal ordinate, the estuary geometry
and the river discharge. We can see that estuary shape is prominently present through both a
and Ap. For the equation to become predictive, an expression for Dy and K needs to be found.
This is done in the following chapter.

We have seen that Van der Burgh'’s equation is a very attractive equation to use for describing
the longitudinal variation of the dispersion in alluvial estuaries. We have also seen from, amongst
others, the work of Shaha and Cho, that it is probably not correct to assume K to be constant
with z. The reason why a constant K works well in practice is because the impact of K on the
salinity is very small in the wider part of the estuary and only becomes prominent near the toe
of the salt intrusion. So the K value used is generally the K value that belongs to the tail of
the salt intrusion curve. In the next chapter we shall discuss the limits of the Van der Burgh
equation further in the light of recent developments.
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Chapter 5

SALT INTRUSION IN ALLUVIAL ESTUARIES

This chapter presents an analytical method to calculate the salinity distribution in alluvial estu-
aries, applicable to a wide range of estuaries under different tidal and hydrologic conditions. The
method is predictive in the sense that we can determine the salinity distribution on the basis of
the geometry and the tidal and hydrologic boundary conditions.

There are different types of salt intrusion, depending on topography, hydrology and tide.
These estuaries range from estuaries with a very strong exponential shape to estuaries with
almost a prismatic shape, and from estuaries that experience strong tidal drivers to estuaries
that are riverine in character. In this chapter we classify them on the basis of their salt intrusion
curve, which appears to be strongly linked to the geometry.

The salt intrusion in alluvial estuaries is generally of the well mixed or partially mixed
type, particularly in the period when it matters: the dry season. This chapter shows that salt
intrusion can be adequately described by the one-dimensional dispersion equation. When this
equation is combined with equations describing topography and dispersion it yields a predictive
equation that can be used for both unsteady and steady state. This equation applies to the tidal
average situation, but also to high water slack and low water slack. The influence of rainfall
and evaporation on salt intrusion can also be taken into account, which sometimes is crucial
to understand the salinity distribution. Under extreme circumstances hypersalinity can occur,
which is illustrated with case material.

5.1 Types of salt intrusion and shapes of salt intrusion
curves

In an estuary of the well mixed type the variation of the salinity along the longitudinal axis of
the estuary is gradual. This implies that if a continuous survey is done along an estuary, e.g. by
a moving boat or by simultaneous observations along the estuary, a smooth curve can be fitted
through the observed cross-sectional averaged salinities. The shape of the curve, however, can
differ widely depending on the situation at hand.

A number of designations will be used to characterize salt intrusion curves of a particular
shape. It is a classification to help identify certain types of salt intrusion, which, as will be shown
further on, have certain relations to both the geometric shape of an estuary and the hydrology.
The following types are distinguished (see Fig. 5.1):

e type 1, recession shape
e type 2, bell shape

e type 3, dome shape

e type 4, humpback shape

Type 1 is an intrusion curve with a logarithmic convex shape; the salinity gradient at the
estuary mouth is steep. Examples of this type are (see Table 2.2): the Chao Phya in Thailand
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x/L

Figure 5.1: Four types of salt intrusion curves.

and the Limpopo in Mozambique, which are close to prismatic, straight and narrow estuaries
(a large value of b). Type 3 shows completely the opposite: it has a concave shape and the
salinity gradient at the mouth is small. Examples of this type are: the Delaware in the USA,
the Thames in the UK and the Schelde in the Netherlands. These are all wide channels with
a pronounced funnel shape (a small value of b). Type 2 is not a transition from type 1 to 3, it
is rather a mixture of the two. It starts concave, but within 50% of the salt intrusion length,
it changes into a convex shape. Examples are the Maputo in Mozambique and the Mae Klong
in Thailand. These estuaries have an inflection point in their width function. They are close
to prismatic upstream (a large value of b), but strongly funnel-shaped near the mouth (a small
value of b).

Apparently, these three types of intrusion curves are very much linked to the geometry of the
estuary. All estuaries studied appear to belong to a certain type of curve shape irrespective of the
hydrological conditions (within the hydrological limits between which well mixed salt intrusion
occurs): the intrusion may increase or decrease, the shape type remains unchanged.

The fourth type is an exception in this respect. A humpback shape is entirely the result of
a rainfall deficit or an evaporation excess. Evaporation can change a bell shaped intrusion into
a dome shaped intrusion and eventually into a hypersaline intrusion. Generally, in well mixed
estuaries, the salinity reduces in upstream direction. Such an estuary is a normal or “positive”
estuary (see Section 1.2). In a positive estuary, the sum of the fresh water inflow and the direct
rainfall on the estuary surface exceeds the evaporation (Dyer, 1973). In some arid parts of the
world, however, so-called hypersaline or ”negative” estuaries occur where evaporation exceeds the
sum of rainfall and runoff. In a hypersaline estuary the salinity increases in upstream direction
until it reaches a maximum after which it decreases depending on the amount of fresh water
inflow. The maximum salinity to be reached is saturation level (363 kg/m*® at 20°C). Such
hypersaline estuaries occur for example in the Sahel: the Saloum and the Casamance (Pagés and
Citeau, 1990), and in some tropical North Australian estuaries (Wolanski, 1986). Although in
all estuaries there is, in principle, an influence of direct rainfall and evaporation on the salinity
of the estuary water, this effect is not important in most of the estuaries. In Sections 5.3 and
5.7 more attention is paid to this phenomenon.

This classification of salt intrusion curves is a purely descriptive one. In the following sections
the salt intrusion will be analyzed in an analytical way making use of the equations of conservation
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of mass for water and salt.

5.2 Salt balance equation

In analogy with the 1-D mass balance equation for water, the mass balance equation for dissolved
salt states that the sum of the change in salt load over time and the change of the salt fluxes
over the distance should be zero or, in case of a source of salt, should be equal to the source.
Hence the cross-sectional averaged salt balance equation reads:

0As OF
T‘SW + 8_.'17 =0 (5.1)
where:
— rg is the storage width ratio defined earlier in Chapter 2
— F=F(z,t) is the mass flux of salt in kg/s averaged over the cross-sectional area A
— s=s(z,t) is the salinity in kg/m?

In contrast to the water balance of (2.2), the salt balance equation does not have a source
term. In (5.1) the source term can be disregarded, unless salt is picked up from the bottom
or from marginal salt flats. Salt deposition by rainfall is marginal and evaporation does not
carry any salt either, so for all practical purposes in alluvial estuaries the source term may be
disregarded.

Subsequently, the mass flux is defined as:

F=//Usdzdy (5.2)

where U=U (z,y, 2,t) and s=s(z,y, z, t) are the water velocity and salt concentration at a certain
point (y, z) in the cross-section. Equation (5.1) can be elaborated by making use of (2.2), the
continuity equation of water, eliminating the temporal variation of the cross-sectional area:

ds 0Q  OF
TSABt — sa + B —sRg (5.3)

where @ is the discharge. We see that through the water balance the source term enters into the
equation.
The mass flux F' is generally decomposed into an advective and a dispersive term:

0Os
where D=D(z,t) is the longitudinal dispersion coefficient in m?/s. Differentiation of (5.4) leads
to:

OF  ds  0Q 9 [, 0s
o Q(?z to%: " Bz <AD6m) (5.5)

where D=D(z,t) is the longitudinal dispersion coefficient in m?/s. Differentiation of (5.4)
leads to:
ds ds ad ds
A— ———|AD— | =—sR 5.6
rsAg T 9 3:1:( 6.1:) sts (56)
where we note that the second term of (5.3) was cancelled out by the second term of (5.5).

In the literature, the storage width ratio in (5.6) is often disregarded. This is not correct,
but in steady state models the effect of the storage width is obviously not present. In dynamic
models where it is disregarded, it can be compensated in the first term by increasing the value
of Ay (assuming a larger cross-sectional area at the mouth), but obviously, that would require
an adjustment of the dispersion as well to correct the error thus introduced in the third term.
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Equation (5.6) is the unsteady state one-dimensional salt balance equation. Separation of
the discharge @ into a tidal component and a fresh water component yields:

ds ds a ds

TSA& + (Qt - Q}') 8_.’17 — 6_1‘ (AD%) = —SRS (57)
where Q;=Q;(z,t) is the tidal discharge, which has a time-average value of zero, and Q ;=Q(t)
is the fresh water discharge of the river(s) entering the estuary, which is a scalar with a positive
value. The time scale of the temporal variation of the two discharges is different. The tidal
discharge variation has a time scale of hours, whereas the fresh water discharge variation has a
time scale of days to months. In the remainder of this section, the source term (which stems from
the water balance equation, not from the salt balance equation) will be neglected. However, in
Section 5.3, the effect of rainfall and evaporation on this term will be dealt with in detail.

Situation at High Water Slack and Low Water Slack

A special case of (5.7) occurs at high water slack (HWS), when the direction of flow changes
from upstream into downstream. At HWS - by definition - the tidal discharge Q; is zero. In case
of a mixed-type wave (see Section 2.2) the time at which HWS occurs - some time after reaching
high water (HW) - propagates upstream with the celerity of the wave. The moment of HWS
occurs later as the tidal wave moves further upstream. Hence at each point along the estuary
HWS occurs at a different time.

Similar to the discharge, the rate of change of the salinity ds/dt can also be decomposed into
a tidal component - with a periodicity equal to the tidal period - and a long-term component.
Since in a situation where the fresh water discharge is constant, the maximum salinity is reached
when Q; is zero at HWS, it is reasonable to assume that even when @y varies over time the tidal
component of ds/dt is zero at HWS. Hence (5.7) can be modified for HWS into:

0spws Osgws 0 0sHws
rsA—o— —Qr—, _a_z(AHWSDHWS 9% )=0 (5.8)

where dsyws/0t is the long term variation of the salinity at HWS. If the long-term variation is
negligible (Q; is constant), a situation of equilibrium occurs in which there is a balance between
the second and the third terms. In that case, (5.8) can be integrated with respect to z. The
uppercase S=S(z) is used to indicate the steady state salinity. Since the fresh water discharge
Qs may be considered invariant with z, integration under the boundary condition that S=S
(the fresh water salinity) and S/0z = 0 when z — oo, yields:

as
Qs (Suws — Sf) + AuwsDuws g;/s =0 (5.9)
An analogous derivation can be made for low water slack (LWS):
0SLws
Qs (SLws — Sf) + ALwsDrws Franid (5.10)

The subscript LWS refers to the situation at LWS. The curves described by (5.9) and (5.10)
represent the two sets of points in the S-z plane that occur at HWS and LWS respectively. Since
HWS and LWS represent the upper and lower extremes of the salt intrusion, they form two
envelope curves between which the salinity varies (see Fig. 5.2). Instantaneous salt intrusion
curves fall within the two envelopes.

Mean tidal situation
Another special case is the tidal average situation, which follows from averaging over a tidal cycle

under the following first order approximations:

0sT 4
ot

T
1[0
T/Aédt ~ Ara (5.11)
0
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Figure 5.2: Envelope curves of salinity intrusion at High Water Slack (HWS) and Low Water Slack
(LWS). The example is taken from the Maputo estuary. The observations made on 29/5/1984
are indicated by symbols, the envelope curves by drawn lines.

T
1 0s
S —dt = 12
1 [ Qgmdt~0 (5.12)
0
1 y 0 0.
S ~ STA
T/Qfazdt~Q, o (5.13)
0
1 g d 0. 0 0
S ~ 2 STA
- / o (ADa—x) dt~ o (ATADTA °T > (5.14)

0

where the subscript TA refers to the tidal average (TA) situation, and D14 is the tidal and
cross-sectional average, z-dependent, dispersion. In particular the latter three assumptions are
inaccurate near the toe of the salt intrusion curve, where ds/0z may vary strongly with time.
This led Fischer et al. (1979, p.270) to remark that efforts made to derive a time-averaged disper-
sion equation starting from (5.7) have not been wholly satisfactory because of the assumptions
required. Making use of the above assumptions (5.7) can be modified into:

0sTA dsTa 0 L _
’r‘sATA 8t —Qf 6:11 _a:lj (ATADTA 3.'1,‘ )—0 (5.15)

Fischer et al. (1979) remark that in view of the weakness of the assumptions, it is better to
consider (5.15) as an empirical model that should be verified in practice. However, the fact that
(5.15) has been used successfully in many mathematical models appears to be sufficient reason
to adopt this model as sufficiently adequate.

In support of this, O’Kane (1980) demonstrated that (5.15) follows from (5.7) in an oscillating
framework, where the observer maintains a constant volume of water between himself and the
head of the estuary. The only assumption required in his derivation is that the dispersion is
devoid of harmonics. In fact, in a one-dimensional model, O’Kane’s framework is Lagrangean as
long as the amount of fresh water inflow is negligible compared to the tidal volume. In well-mixed
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estuaries this is an acceptable assumption. O’Kane’s equation can be applied equally well to the
tidal average situation, or to slack; the difference between HWS, LWS or TA being merely a
longitudinal translation (see Fig. 5.2. In all three cases, the rate of change 9s/9t reflects the
long-term variation of the salinity. In this respect, the dispersion D74 should be considered as
an “effective” tidal average dispersion, since it is a bulk parameter that expresses the result of
all mixing processes that occur within a tidal cycle.

Although (5.15) may be considered correct, in this book, we shall not focus on the TA
situation. In our approach the HWS and the LWS situations are considered more relevant,
providing the extremes between which salt intrusion is bound. Particularly the HWS situation
is important since it determines the maximum salt intrusion that during a given day occurs. For
design purposes, this is the critical situation.

In the special case where equilibrium occurs between the advective and dispersive terms:
0s7a/0t = 0 and steady state occurs. In that case (5.15) can be integrated with respect to z to
yield:

Qs (Sra — S5) + AraDra &;;A =0 (5.16)
where ST represents the mean tidal steady-state salinity. The boundary condition used is that
Sta = Sy and 0S7,4/0x = 0 when z — oo. The river water salinity S; is generally small as
compared to the salinity in the estuary (Sta > Sy) and is often disregarded.

In contrast to what some researchers (Ippen, 1966a; Hansen, 1965) did, it is not at all nec-
essary to assume that Ar4 and Dr,4 be constant with z. Hence, both A7, and Dy 4 are still
functions of z. In the following we will give a solution of these steady state equations for a
cross-section and dispersion that vary with z.

Similarity between HWS, LWS and TA situation

There is a large similarity between (5.9), (5.10) and (5.16). All three equations, in the particular
situation for which they apply (HWS, LWS or TA) are of the form:

0S;
ox

where 7=1,2,3 indicates the three different states: HWS, LWS and TA, and where ¢; is an z-
dependent coefficient equal to the ratio between the dispersion coefficient and the fresh water
velocity, which is different for each state. Hence, the difference between the three equations lies
in ¢; and in the different downstream boundary conditions belonging to each state. It will be
shown in Section 5.5 that, as a result of the expression used for ¢;, the three curves have identical
shapes but different positions along the z-axis.

S,-—szci

(5.17)

5.3 Influence of rainfall and evaporation

The direct rainfall on an estuary and the evaporation from an estuary are described mathe-
matically by the parameter P,, representing net rainfall in m/s (the balance of rainfall and
evaporation). If P, is negative, then evaporation predominates.
The continuity equation for water, (2.2) changes if rainfall is added to the water balance:
0A oQ
—_— = BP, 5.18
rs ot oz +7rs n ( )
where B is the estuary width and rs accounts for the fact that the rainfall acts over the entire
width, including the storage width. Combination of (5.18) with (5.1) and comparison with (5.3)
yields an expression for the source term, as an effect of rainfall or evaporation:

rgA— —s— + = —rgsBP, (5.19)
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The source term has a negative sign. It is negative if rainfall is added to the system, leading to
a dilution of saline water, and positive in case of evaporation, leading to a higher concentration
of salt.

To simulate the effect of rainfall and evaporation, use is made of the mean tidal salt balance
equation, (5.15), to which the source term is added:

ds

rsAa - QI% 0 (AD§> = —rgsBP, (5.20)

Oz oz
Rainfall and evaporation affect the salt balance in two ways. One is through the source term,
the other is through the fresh discharge Q.

Integration of (5.18) with respect to z for the mean tidal situation where Q=—Q and under
the assumption that the long term variation in the cross-sectional area A /9t is negligible, leads
to:

oo o0
/de = —/TsBPndI (5.21)

The integration is done to infinity, signifying the length over which the tidal influence is felt,
which is a length several times larger than the width convergence length b. There, the fresh
water discharge equals the river discharge @, which is supposed to be measured outside the tidal
influence. Elaboration of (5.21) yields:

Qs(z) = Qr +rsBP,b (5.22)

Meaning that if r is positive, Qs(z) reduces in upstream direction and increases towards the
mouth of the estuary. If P, is negative, then there is a point where Qs becomes zero, after which
it becomes negative, attracting water from the sea.

The salt balance equation hence modifies into:

Os Os 0 ds
'I'sAa — (Qr -+ TsBPnb) a — % (ADE) = —rgBP,s (5'23)

Depending on the relative size of each term in (5.23), the effect of rainfall and evaporation is
important or small. The relative size of each term depends on both hydrological and geometrical
parameters, which can vary strongly from estuary to estuary. In most estuaries, however, the
importance is small, which is one of the reasons that not much attention is given to this issue
in the literature. Savenije (1988) showed that evaporation is important to describe the salinity
distribution in the Gambia. Savenije and Pagés (1992) showed that this was also the case for the
estuaries north and south of the Gambia: the Saloum and the Casamance, leading to hypersaline
conditions.

Scaling of the salt balance equation

To analyse the relative size of the terms in (5.23) the terms of the equation are scaled. Elaboration
yields:

ds ds 0A ds D ,ds 8%

rsdg; — (@ +rsBPb) 5 = 5 Do ~ ax 4%s ~ 4Par

5% = —rsBP,s (5.24)

Using the exponentially varying cross-sectional area of (2.38), (5.24) can be further elaborated:

ds @, 9s P,bds DOs 0D os 0%s P,
"Sot ~ Adz S h oz ads owow Lo TSR0 (5.25)

This is a linear differential equation of s with z-dependent coefficients. The relative importance
of the terms in (5.25), and in particular the rainfall (and evaporation) terms, is analysed through
scaling of the terms. The parameters are transformed into non-dimensional parameters in a way
that the non-dimensional salinity and its derivatives are of the order unity, and that hence the
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coefficients determine the relative importance of the terms. The following transformations are
made:

' =t/T

' =z/L

s'=s/S
Q' =Qr/Qo
P! = P,/Py
D' =D/Dy

where Qg is the dry season fresh water discharge, P, is the net rainfall rate during the dry
season (negative in case of net evaporation) and L is the tidal average salt intrusion length that
corresponds to Qo. With these transformations (5.25) can be scaled:

0s’

as'
W + Nlpnlsl + (—N2Pnl — N3Q’ + N4D/) % — N5 (

oD’ s’ ,0%s'
oz 9z T 97

) =0  (5.26)

where the following non-dimensional coefficients determine the relative importance of the terms
with respect to the rate of change of the salinity, 9s’/dt’.

Ny = PyT/h

N, = PyTb/(hL)
N3 = QoT/(rsAoLexp(—2'L/a))
Ny = DyT/(rsalL)
N5 = DoT/rsL?

where N7 and N; weigh the impact of the net rainfall P, on the rate of change of the salinity,
Nj through dilution and N3 through advection; N3 weighs the impact of the river discharge on
the rate of change of the salinity; and Ny and N5 weigh the importance of the dispersion at
the downstream boundary to the rate of change of the salinity. In Table 5.1 the values of the
coefficients are presented for the estuaries studied.

In evaluating the importance of the terms of (5.26), the following should be taken into
account. Firstly, although s’ varies between 0 and 1, this is not the case for its derivatives.
Secondly, the coefficient N3 depends on z’, and, hence, is not a constant. The choice was made
to incorporate the factor exp(-z’L/a) in N3 (instead of leaving it in the equation) to make
the variables independent of the estuary under consideration, and to let the estuary-dependent
coefficients determine the relative importance of the terms.

Consequently, a certain value of z’ should be selected to allow comparison between estuaries.
At the downstream boundary, where 2’ = 0, the salinity is determined by the ocean salinity,
and evaporation has no effect. At the upstream boundary, where z’ = 1, the salinity equals the
fresh water salinity and the effect of evaporation is negligible. The part of the estuary where
evaporation has the largest effect is in the central part of the salinity zone, where 2’ = 0.5,
D' = 0.5, s = 0.5, 9D’ /dz’' ~ —1 and 0s'/0z’ ~ —1. Hence z’ = 0.5 has been selected for the
comparison.

To evaluate the importance of rainfall and evaporation in relation to other terms, the non-
dimensional coefficients are grouped (see Table 5.2). In combining coefficients, it is assumed that
D’ 0.5, s' 0.5, D' |0z’ ~-1 and 8s’ /dz’ =-1, and that the magnitude of D'9%s’/0z"? is small
as compared to the others. These assumptions are not exact since the values depend on the
type of the salt intrusion curve: in case of a dome shaped intrusion curve, s’ > 0.5, 9s'/9z" >1,
and 9%s’/0z'? < 0; in case of a recession shaped intrusion curve s’ < 0.5, ds'/dz’ < —1, and
9%s'/0z'? > 0. They are, however, sufficiently accurate to evaluate the relative importance of
the terms in orders of magnitude. This results in three coefficients: one coefficient Np, which
weighs the overall importance of rainfall:

Np =Ni/2+4 N,
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another coefficient which weighs the importance of fresh water inflow:
Ng = N3
and a third coefficient which weighs the overall impact of the dispersion:
Np =0.5N; + N3

In Table 5.2 these coefficients are presented, as well as the ratios of Np to Ng and Np respectively.
It can be concluded from Table 5.2 that: 1) the effect of evaporation is important in the Gambia,
2) there is some influence during minimum flow in the Incomati, and 3) the influence is not
significant in the other estuaries studied.

Table 5.1: Non-dimensional coefficients determining the relative importance of terms to salt
intrusion.

Estuaries h a b AB L Qo P()T Do N1 N2 N:; N4 N5

(m) (km) (km) (m?) (km) (m%/s) (mm) (m?/s) (10°%) (10°%) (10°%) (10°%) (10°%)
Mae Klong 5.2 102 155 1400 26 30 -1.9 190 -0.37 -2.18 41.6 3.18 12.48
Solo 9.2 226 226 2070 35 10 -1.9 238 -0.21 -1.33 6.6 1.34 8.63
Lalang 10.6 217 96 2550 65 50 -2.0 892 -0.19 -0.28 15.6 2.81 9.37
Limpopo 7 100 50 1340 60 5 -2.0 145 -0.29 -0.24 3.7 1.07 1.79
Tha Chin 5.3 87 87 1380 70 10 -1.9 273 -0.36 -0.45 6.9 1.99 2.47
Chao Phya | 7.2 109 109 4300 50 30 -1.9 332 -0.26 -0.58 7.8 2.70 5.90
Incomati 2.9 42 42 1750 50 1 -1.8 9 -0.62 -0.52 0.9 0.19 0.16
Pungue 3.5 21 21 28000 70 20 -2.4 138 -0.69 -0.21 24 5.17 1.25
Maputo 3.6 16 16 6460 40 10 -1.8 105 -0.50 -0.20 6.0 7.28 291
Thames 7.1 23 23 58500 90 20 1.0 77 0.14 0.04 1.2 1.65 0.42
Corantijn 6.5 64 64 34600 50 500 -2.0 230 -0.31 -0.39 19.0 3.19 5.08
Sinnamary 3.8 39 39 1210 16 100 -2.4 560 -0.63 -1.54 2816 3985 97.13
Gambia 8.7 121 121 27200 300 2 -2.4 200 -0.28 -0.11 0.04 0.24 0.10
Schelde 10.5 28 28 150000 110 90 -1.0 264 -0.10 -0.02 1.7 3.81 0.97
Delaware 6.6 41 41 255000 140 300 -1.0 312 -0.15 -0.04 2.1 2.41 0.71

Table 5.2: Non-dimensional coefficients indicating the relative importance of rainfall and evapo-
ration in relation to discharge and dispersion.

Estuaries Np NQ Np NP/NQ NP/ND
(10-3) (1073) (1073)
Mae Klong -2.4 41.6 15.1 -0.1 -0.2
Solo -1.4 6.6 9.3 -0.2 -0.2
Lalang -04 15.6 10.8 -0.0 -0.0
Limpopo -0.4 3.7 2.3 -0.1 -0.2
Tha Chin -0.6 6.9 3.5 -0.1 -0.2
Chao Phya -0.7 7.8 7.2 -0.1 -0.1
Incomati -0.8 0.9 0.3 -0.9 -3.3
Pungue -0.5 2.4 3.3 -0.2 -0.2
Maputo -0.5 6.0 6.6 -0.1 -0.1
Thames -0.1 1.2 1.2 -0.1 -0.1
Corantijn -0.5 19.0 5.7 -0.0 -0.1
Sinnamary -1.9 281.6 117.0 -0.0 -0.0
Gambia -0.2 0.0 0.2 -6.6 -1.1
Schelde -0.1 1.7 2.9 -0.0 -0.0
Delaware -0.1 2.1 1.9 -0.1 -0.1
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5.4 Time scales and conditions for steady state

The assumption made in (5.16) to arrive at the steady state equation for conservation of mass,
requires that in the estuary an equilibrium condition is reached between, on the one hand,
advective salt transport through the downstream flushing of salt by the fresh water discharge,
and, on the other hand, the full range of mixing processes induced by the tidal movement and
the gravitational circulation. The time required for an equilibrium to occur depends on 1) the
rate at which the boundary conditions vary, in particular the rate of change of the fresh water
discharge, and 2) the time required for the estuary system to adjust itself to a new situation.
During the dry season, when the problem of salt intrusion is most acute, the variation of the
fresh water discharge is generally slow. The question is: does the system react at the same pace
as the boundary conditions, or does it need more time? In the latter case, the system lags behind
steady state.

The estuary system reacts quite differently to an increase and to a decrease in the fresh water
discharge. Generally the estuary reacts relatively quickly to an increase of the discharge. The
new volume added at the upstream end of the estuary propagates as a mass wave through the
system. However, the reaction to a decrease in the fresh water discharge is slow, since the process
of salinization, gradually replacing the fresh water by saline water through mixing, takes time. In
this respect, Van Dam and Schénfeld (1967) remark about the Schelde and Eems estuaries in The
Netherlands that “the characteristic time for reaching a new equilibrium, for example from a wet
period to a dry period, is in the order of one year for the Schelde, so that a final state is usually
never reached”. Although for the Schelde this observation will prove to be somewhat exaggerated,
in the Gambia, the process of adjustment to a reduction of the fresh water discharge is so slow
that the salt intrusion always lags far behind steady state. This phenomenon is important. In
the Gambia, it is due to the slowness of the mixing process that so much fresh water remains
available in the upper part of the estuary, during the dry season. If equilibrium were reached,
the salt intrusion would go much further upstream.

It is important to investigate in a given estuary how quickly the system adjusts to a new
situation. If the time required for the system to reach equilibrium is too long in relation to the
variation of the boundary conditions, then a steady state model may not be used.

System response time scale

Kranenburg (1986) developed a time scale for system response to a variation in discharge, which
is based on the comparison of a steady state model with an unsteady state model. If the salinity
difference per unit of time between subsequent steady states at a certain point along the estuary
axis (as a result of a change in fresh water discharge) is defined as S74/0t then a steady state
is not reached as long as the mean tidal salinity adjustment rate 9sTA/dt is smaller, in absolute
terms, than 9S4/t for an infinitely small time step At. Hence a condition for steady state is
that:

ASTa

At

BsTA
ot

> lim

Z 11
At—0

(5.27)

However, when the unsteady salinity variation is larger than the variation between subsequent
steady states, the unrealistic situation occurs where the system reacts stronger than the forces
driving the system. Hence, for the state of equilibrium to be reached it is sufficient to assume
that the unsteady state salinity variation should be approximately equal to the variation between
steady states:
dsTa _ i ASrta
ot atso At

(5.28)

In the following elaboration of (5.28), for reasons of simplicity, the subscript TA for the tidal
average situation in S, s, A and D is removed. Combination with (5.15) yields:

ad ds . AS
oz (Qfs +AD a—m) ~Alm R (529)
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In fact, the integral of (5.29) with respect to  represents the balance between, on the one hand,
the salt flux, see (5.4), which the system can produce, and on the other hand, the amount of salt
per unit of time required to follow up subsequent steady states.

Since the time dependency of the steady state salinity S is merely through Q’f:

AS _ 85 dQ,

li .
At At At 8Qf dt (5:30)

The most interesting case for the rapid assessment technique is the situation of extreme salt
intrusion during the dry season, when the discharge is gradually diminishing. During the dry
season the depletion of the fresh discharge is exponential, following the normal recession curve

used in hydrology:
Qs _ Qs
dt Tq
where T is the time scale of the discharge reduction (which corresponds to the residence time
of the renewable groundwater in the river basin).

Integration of (5.29) with respect to z, under the boundary condition that s = 0 at z = L,
and combination with Eqgs. (5.30), (5.31) and (5.16), disregarding Sy, yields:

(5.31)

A as
(§—s)+ Q, <Dssa—z ) TQ/Aan (5.32)

where Dgg refers to the steady-state dispersion of (5.16) and D to the unsteady-state dispersion.
Depending on the theory used, the tidal average dispersion coefficient D is a function of z, Qy,
0s/dz, s or any combination of them. If the dispersion coefficient was only a function of z and
Qy, then D would be equal to Dgg. If, however, the dispersion coefficient is assumed to depend
on s or ds/dx, as is the case in several theories, then they can be different, although percentage-
wise they can’t differ much. However, since also the salinity gradients between steady state and
unsteady state are different, the dispersion terms are different, and don’t annihilate.

Kranenburg solves this problem in the following way. He observes that (s —S) = 0 both at
z =0 and at x = L, and that somewhere in the middle of the estuary a point should lie where
(s — S) reaches a maximum value, and where, hence, 9s/0z = 8S/dz. With D ~ Dgg, this
implies that there is a point z = X where the steady state and unsteady state dispersion terms
of (5.23) annihilate each other whether or not D depends on 9S/dx. Hence:

L
(S — 8)|x ~ —/A%d (5.33)

Subsequently, the time scale for system response can be defined as:

Tk = (5.34)

S(X)/ AaQ,

Combination with (5.33) yields:

Tk zTQ((Sgs))X (5.35)

Assuming that the maximum difference between steady and unsteady state salinity lies at about
half the salt intrusion length (X=L/2). This implies that to reach a state of 90% equilibrium at
z =1L/2, (S —s)/S=10%, and Tk should not be more than 0.17¢. To reach a further state of
equilibrium Tk should be less.
A more simple approach to determine the system response time is on the basis of the time
required for the system to adjust itself to a new steady state S. The time scale is defined as:
Os S-—s

%= T (5.36)
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In analogy with the operations carried out to obtain T, (5.36) is modified into:

L
as ds 1

If Kranenburg’s assumption is applied that at z = X: Dds/0z = DgsdS/dx, then (5.37) yields:

L
QTs(5 - s) ~ / A(S — s)dz (5.38)
X

Because the spatial distribution of s is not known, it is assumed that in reaching the new steady
state, the difference in salinity (S — s) is a proportion of S. For the reach between X and L, this
seems a reasonable assumption:

L
1

This is the time required for the fresh water discharge, with a salinity S(X), to replace the salt
accumulated upstream of X. For a steady state to occur, this time scale should not be larger
than the time scale of the discharge reduction.

Particle travel time

A good time scale to compare Ts or Tk, with is the average time T’y required for a fresh water
particle to travel over the salt intrusion length:

L
A
Ty = 0/ Q—fda: (5.40)

One could call this the flushing time scale, since it equals the time required to flush the estuary
with fresh water. In an exponentially shaped channel with a convergence length a, (5.40) yields:

1y (1o (-£)) s

If the exponential function describing the cross-sectional area consists of two branches (as we
saw in Chapter 2 sometimes happens), the upstream branch is considered most important since
for the determination of Ts integration is done between X and L, and consequently in (5.41)
the convergence length of the upstream branch is used and a value Aj, instead of Ay which is
obtained by extrapolation of the upstream branch to the estuary mouth. This value has been
used for the computation of Ty in Table 5.6.

The ratio of T's to T is an interesting parameter for further study, since it no longer depends
on the fresh water discharge @, and hence only includes geometric variables of the estuary under
study.

Given a mathematical model for the steady state salinity distribution, (5.39) can be solved,
and the system time scale T's determined. This is done in Section 5.6, after we have obtained an
expression for the salt intrusion length L.

5.5 Predictive model for steady state

5.5.1 Expressions for HWS, LWS and TA

Steady state salt intrusion models can be divided into three types, depending on their derivation:
low water slack (LWS) models, e.g. Ippen and Harleman (1961); tidal average (TA) models, e.g.
Van der Burgh (1972); and high water slack (HWS) models, e.g. Savenije (1989). A LWS
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model is calibrated on measurements carried out at LWS, and a HWS model with measurements
carried out at HWS. For the calibration of a TA model, the average salinity has to be derived
from measurements carried out during a full tidal cycle at several points along the estuary axis,
which, if done well, is very elaborate and time consuming.

Although HWS models are not commonly used, they are the most practical models because
the best moment to carry out a salt intrusion measurement is at HWS; this is for the following
reasons:

1. The moment that HWS occurs is easily determined. The observer measures the salinity,
when the in-going current slacks. Although the same advantage applies to LWS, the acces-
sibility at LWS is generally poor. The estuary is shallow and sometimes it is very difficult
to reach the waterside. Inaccessible mud flats often separate the river from the banks.

2. If the salinity at the downstream boundary is not known, it can easiest be estimated at
HWS. At HWS, the salinity at the estuary mouth is generally equal or almost equal to
the sea salinity, which is not, or not much, affected by the fresh water discharge from the
estuary.

3. At HWS the salt intrusion is at its maximum. Generally, it is the maximum intrusion that
is of interest to planners.

4. A single observer in a small outboard driven boat can travel with the tidal wave and
measure the entire salt intrusion curve at HWS. If the intrusion length is not too long, he
may even return to the estuary mouth and repeat the measurement for LWS.

As it seems logical to assume that the TA salt intrusion is directly related to the fresh water
discharge, many predictive models are of the TA type. These models, however, do not provide
information on the maximum and minimum salinity reached at a certain location as a function
of the tide. This is especially important, when during part of the day, the water is fresh, while
during another part of the day the water is brackish. In this Section, it will be shown that the
model used in the rapid assessment technique can be calibrated on HWS - which has all the
advantages mentioned above -, can be used to compute the situation at LWS and TA, and that
the calibration parameters obtained can be well related to hydrological, hydraulic and geometrical
parameters.

Section 5.2 it has been shown that the same type of (5.17) can be used to describe the three
situations of HWS, LWS and TA. Because in a steady state situation the S/t = 0, and hence
0S/0x = dS/dz, no partial derivatives are used in the subsequent derivations in this Section.
(5.17) can be combined with Van der Burgh’s equation, described in Chapter 4, and the geometric
assumptions, described in Chapter 2, to yield HWS, LWS and TA analytical equations that are
mathematically related. In the following paragraphs relations are derived between the salinity
distributions at HWS, LWS and TA. These relations allow the determination of the dispersion
at LWS and TA, and the corresponding salinity distributions on the basis of the calibrated
dispersion at HWS.

To this end, in agreement with (5.9), (5.10) and (5.16), (5.17) is expanded to read:

A dS;
a Q_f D dz

where A is the tidal average cross-sectional area, D;=D;(z) is the dispersion coefficient at HWS,
LWS and TA respectively. It should be noted that the values of Q; and A are assumed to be
the same for HWS, LWS, and TA. The error made by using the same value for A is compensated
by D;, which then also incorporates the effect of a smaller cross-sectional area at LWS and a
larger cross-sectional area at HWS. In this way all the differences between HWS, LWS and TA
are incorporated in one variable D;.

In Chapter 3 the Van der Burgh equation has been presented. Van der Burgh assumed that
his relation, which was derived for the TA situation, could be used for LWS and HWS as well:
he assumed that the salt intrusion curve obtained for the TA situation could be shifted upstream
over half the tidal excursion to obtain the HWS situation, and downstream over half the tidal

Si— 8y = (5.42)
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excursion to obtain the LWS situation. This is in agreement with what was observed by O’Kane
(1980) in his oscillating framework approach (see Section 5.2) and by Park and James (1990) who
stated that the instantaneous - not tidal average - salt flux F' was found to arise predominantly
from the product of the tidal average salinity S and the tidal velocity U. This means that the
tidal average salinity variation represented by the terms in (5.15) is small as compared to the
instantaneous advection UAJS/dz. Hence, over one tidal cycle, a short time compared to the
time required to adjust the terms in (5.15), it is justified to assume average mixing conditions
corresponding to the TA situation.
Hence Van der Burgh’s expression is used for HWS, LWS and TA:

dD;
P —K&

=K (5.43)
Combination of (5.42) with (5.43) yields:
ds 1dD
S-S, KD (5.44)

where the subscript 7 has been disregarded for the sake of simplicity, but it is understood that
(5.44) can be applied to the HWS, LWS and TA situation. Integration results in:

L
S—Sf _ D\¥
So—S; = (D0> (5.45)

where Sy and Dy are boundary conditions at z = 0 for the HWS, TA or LWS condition. In
addition, integration of (5.43) in combination with an exponentially varying cross-section yields:

DEO =1-p (exp (2) — 1) (5.46)
where: KaQ,
B = Dodd (5.47)

where f is the dispersion reduction rate, which is always positive, determining the longitudinal
variation of D. From (5.45) it can be seen that S = Sy when D = 0. Since S = Sy at z = L,
the intrusion length, (5.46) can be elaborated to yield an expression for the intrusion length:

L=aln (% + 1) (5.48)

Since 3 is positive, the argument of the natural logarithm is always larger than unity.
Application of (5.45) and (5.46) to the HWS situation, disregarding Sy for reasons of conve-
nience, yields:

1
gHWS DHWS\
HWS HWS (5.49)
So Dg
pHWS KaQ, z
DFws ~ ' DEws 4 (exe (3) 1) (5.50)

Since the tidal excursion may be assumed to be independent of z, the envelope lines of the
salinity at HWS and LWS should have the same shape. The line at TA is obtained through a
horizontal translation over a distance equal to half the tidal excursion. Hence:

STA — gHWS (3 — E/2) (5.51)
STA(x = E/2) = SHWS(z = E) (5.52)

Application of the combined (5.9) and (5.10) at z = E/2 and = = E, division of the results,
some elaboration and substitution of (5.51) and (5.52) yields:

1

SHWS(z —F)  STA(z=E[2) ( - KaQ; exp (£) — 1) (5.53)

SHWS(z=E/2) ~  SgA ' ADHVS(z=E/2) exp(-L)
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If one uses (5.45) and (5.46) for TA, and substitutes = E/2, then comparison of the result
with (5.53) learns that:

p"Ws KaQ E E
TA _ _1_ f i _E
Dy* = { WS 1 AWS 40 (exp <2a) 1) } exp ( 2a) (5.54)

Similarly for LWS, one obtains:

SEWS — gHWS( — E) (5.55)
DHWS Kan E E
DEWS — {DOHWS =1- DIVS A <exp (;) - 1) } exp (_E> (5.56)

Estuaries with a complex geometry

In some estuaries the geometry cannot be described by a single exponential function. Several
estuaries require two branches to describe the longitudinal variation of A, see for instance the
Incomati estuary of Fig. 2.9. In fact there are many estuaries like that. In Table 5.3 there
are: the Limpopo, the Tha Chin, the Incomati, the Pungue, the Maputo, the Corantijn, and
the Sinnamary. In fact most of the estuaries have two branches, often accounting for a trumpet
shape near the estuary mouth. In those estuaries the above equations can be solved stepwise.
The geometry is given by:

A = Apexp (_ai) ,if0<z < (5.57)
1
A= Ajexp (_a: ; zl) , ifz >z (5.58)
2

where z, is the inflection point, Ay = A(z1), a1 is the convergence length of the downstream
branch, and as of the upstream branch. In general, the downstream convergence length is shorter
than the upstream one, resulting in the said trumpet shape.

The (5.45) and (5.46) can be applied normally for the downstream part, using a; for a.
Subsequently, a value for the dispersion at the inflection point D; needs to be determined, as
well as the salinity at the inflection point: Sj. This is done by substitution of z; for z in (5.45)-
(5.47), using a; for a. Subsequently, (5.45) and (5.46) can be used for the upstream end, taking
D, and S; as the downstream boundary conditions. The intrusion length can be computed as
follows:

LHWS = 21 + agln (Bi + 1) (5.59)
1
where 3 is defined by:
KaxQy
= 5.60
A DA, (5.60)

using the value of D; determined at the inflection point.

After calibration of the model on HWS observations, the values of S¥"S and DEWS are
known. Consequently, the salinities and dispersion coefficients at any point along the estuary for
HWS can be calculated with Egs. (5.49) and (5.50).

By substitution of these HWS values into equations (5.51), (5.54), (5.55) and (5.56), the TA
salinities and the LWS salinities can be computed using (5.45) and (5.46) for TA and LWS;,
respectively.

In the above equations there remain two unknown model parameters: K and DIWS. In
addition, there is another variable that is often unknown: the fresh river discharge @y, which
in an estuary is one of the most difficult parameters to determine. Fortunately, in the above
equations, @y always occurs in the same term as the dispersion coefficient, which permits them
to be combined into only one variable, the mixing coefficient a(m=1):

_b
-2

o (5.61)
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The value of o at the estuary mouth, g, is a model parameter that can be obtained through
calibration. The two remaining calibration parameters function differently: K is a value that
is fixed for a certain estuary, whereas o varies over time, responding to the tidal range and
the river discharge. They affect the equations differently and can be easily found by fitting the
model to observations.

To be able to determine the fresh water discharge from ag, an additional relation is needed
between o and Q. This relation, which is required to make the model predictive, is established
in the next section.

Some applications as illustration

The steady state model has been applied in numerous estuaries for a wide range of river flows and
tidal ranges. The data of these measurements are summarised in Table 5.3 In Fig. 5.2 already
the example of the Maputo estuary in Mozambique was presented. Here some more illustrations
are given of the steady state model applied to three other Mozambican estuaries: the Pungué
(Fig. 5.3), the Incomati (Fig. 5.4) and the Limpopo (Fig. 5.5). These measurements were
conducted by different persons: the ones in the 1980s by the author, the ones in the 1990s by
H.A. Zanting and the ones in 2002 by S. Graas.

It can be seen that the model performs very well, although the estuaries are very different
in character. The Pungué has a “dome-shaped” intrusion curve, the Limpopo has a “recession-
shaped” intrusion curve, and the Incomati and the Maputo have a “bell-shaped” intrusion curve.
The toes of the curves are also different. The toe of the Incomati is very flat, corresponding
with a very small value of K (K=0.15), whereas the limpopo and The Pungué have a steeper
toe (K=0.5 and 0.3 respectively).

When calibrating the model to measurements, one tries different values of K and . Because
these two parameters affect the fit in different ways, it is generally possible to find a satisfactory
combination of K and ag. One should realise that, K should be independent of the river discharge
and the tide, whereas aq should vary with river discharge and tide. So if observations during
different flow regimes are collected, then different values of ag should be obtained using the same
value of K. This can also be seen in Table 5.3.

In general it is important that sufficient measurements along the estuary axis are taken,
because individual measurements can have considerable errors due to: timing errors, variation
of salinity over the cross-section, and local mixing effects (trapping etc.). The best way to derive
a longitudinal distribution is to travel by boat during HWS and LWS. But this may require a
very fast boat in some estuaries, since the tidal wave can travel fast (see Section 3.2).

Empirical relations for the predictive model

To turn the steady state model into a predictive model, (semi-) empirical relations are required
that relate the two calibration parameters K and o to hydrodynamic and geometrical bulk
parameters. These bulk parameters are dimensionless numbers composed of geometrical (a, b,
Ay, By, hp), hydrological (Qy) and hydraulic (H, E, C, v) parameters that influence the process
of mixing and advection. In the past, several researchers searched for significant bulk parameters
to be used for predicting model parameters from directly measurable physical quantities. In the
following, a short review is given of empirical work by Rigter (1973), Fischer (1974), Van der
Burgh (1972) and Van Os and Abraham (1990). With the exception of Van der Burgh, all these
investigators based their analysis on laboratory tests and prototype measurements in estuaries
with constant cross-section.

Classical approaches

Combination of (5.47) and (5.48) yields an explicit analytical relation between the salt intrusion
length L and the effective dispersion at the estuary mouth Dy, or, for that matter, between L and
ap if (5.61) is used. Prominent in this equation is the presence of the convergence length and the
logarithmic function; both stemming from the exponential shape of alluvial estuaries. Classical
literature on the intrusion length, however, is almost entirely based on prismatic channels. This
may be difficult to understand in hindsight, since natural, alluvial, estuaries are never prismatic,
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Table 5.3: Measured salinity distributions and calibrated values of K and g for different estau-

ries.

Estuary date T Hye Eo Qs So f K a1 ) ax Ao h N )2 Fa a ag ag’ Do Dj
(s) (m) (km) (m'/s) (kg/m") (km) (km) (km) (10°m*) (m) (km) (m) (m7Y) (m*/s) (m'/s)

Mae Klong | 20/01/77 86400 2 1 120 28 0.028 03 102 14 520 0673 0003 0.157 7.2 5.4 864 647
08/03/77 44400 1.5 10 60 30 0028 03 102 14 520 0190 0010 0458 6.2 5.4 372 324

09/04/77 44400 2 14 36 20 0028 03 102 1.4 520 0.082 0.019 0.929 9.0 8.1 324 292

Solo 26/07/88 86400 0.8 9 50 35 0023 06 226 207 920 0232 0001 0.047 9.2 74 460 369
08/09/88 86400 0.4 5 7 35 0023 06 226 2.07 9.20 0.058 0.000 0.015 12.5 15.7 88 103

Lalang 20/10/89 86400 2.6 27 120 25 0.023 0.7 217 2,55 10.60 0.151 0.009 0.519 9.0 8.1 1080 970
Limpopo 04/04/80 44400 1.1 7 150 30 0026 05 504 20 130 171 700 0557 0004 0.166 58 9.0 77 1350 1158
31/12/82 44400 1.1 8 2 35 0026 05 504 20 130 171 7.00 0.006 0.005 0.186 105 38.0 423 76 85

22/04/83 44400 0.5 4 1 33 0026 05 504 20 130 1.7 7.00 0.006 0001 0.049 108 45.0 40.2 45 40

24/07/94 44400 09 6.8 5 35 0026 05 504 20 130 171 7.00 0019 0003 0135 101 25.0 25.7 125 128

10/08/94 44400 1.0 7.1 3 35 0026 05 504 20 130 1.71 700 0011 0004 0.147 103 20.0 33.1 87 99

Tha Chin 16/04/81 86400 1.6 12 55 26 0.039 04 22 22 87 3 530 0132 0004 0197 55 15.5 104 8563 572
27/02/86 44400 26 20 40 31 0039 04 22 22 87 3 530 0030 0039 1739 54 15.0 127 600 507

01/03/86 86400 1.8 14 40 34 0039 04 22 22 87 3 530 0.082 0.005 0.205 61 16.5 13.7 660 550

13/08/87 44400 2 15 39 27 0.039 04 22 22 87 3 530 0.038 0.022 1.123 51 12.0 10.9 468 424

Chao Phya | 05/06/62 86400 2.2 22 63 20 0.031 08 109 53 720 0058 0009 0437 114 9.3 718 587
17/03/80 86400 1.5 18 43 32 0031 08 109 53 720 0.048 0.006 0.265 15.2 10.7 654 461

28/03/80 86400 1.7 20 31 34 0031 08 109 53 720 0031 0007 0.308 17.7 13.7 549 425

20/01/83 86400 2.4 26 %0 33 0031 08 109 53 720 0070 0013 0537 12.0 9.0 1080 813

23/02/83 86400 1.6 19 100 28 0.031 08 109 53 7.20 0.106 0.007 0.338 9.4 6.7 940 675

16/01/87 86400 2.5 15 180 20 0.031 08 109 53 720 0241 0004 0.295 5.4 3.8 972 680

Incomati 30/07/80 44400 14 7 3 32 0022 02 75 14 42 81 290 0002 0009 0377 33 9.5 11.2 20 34
05/09/82 44400 14 7 2 35 0022 02 75 14 42 8.1 200 0.002 0009 0.344 35 16.0 13.5 32 27

10/02/83 44400 1.2 8 1 35 0022 02 75 14 42 81 290 0001 0011 0450 37 30.0 19.5 30 19

23/06/93 44400 14 8 4 35 0022 02 75 14 42 81 290 0003 0011 0450 32 10.0 11.0 40 44

07/07/93 44400 26 9 4 35 0022 02 7.5 14 42 8.1 290 0.002 0014 0.569 32 9.4 11.7 38 47

Pungue 26/09/80 44400 6.3 20 22 34 0031 03 21 38 12 264 3.50 0002 0058 2397 16 19.0 10.8 308 238
26/05/82 44400 5 10 50 32 0031 03 21 38 12 26.4 3.50 0.008 0015 0.637 18 5.2 5.5 210 225

06/08/82 44400 5.2 14 36 34 0031 03 21 38 12 264 3.50 0004 0020 1175 17 5.3 6.6 191 237

22/09/82 44400 52 14 26 35 0031 03 21 38 12 264 3.50 0003 0020 1.141 17 8.0 8.1 208 212

20/10/82 44400 6 16 60 3 0031 03 21 38 12 26.4 3.50 0.006 0.037 1.534 17 5.0 54 300 326

03/10/93 44400 5.3 15 10 35 0031 03 21 38 12 264 3.50 0.001 0033 1310 16 28.0 15.0 280 140

12/10/93 44400 3.8 15 10 355 0.031 03 21 38 12 264 350 0001 0033 1.292 17 15.0 13.5 150 135

16/10/93 44400 6.4 16 10 355 0031 03 21 38 12 264 3.50 0.001 0037 1469 16 26.0 15.0 260 150

31/01/02 44400 6.2 20 262 28 0031 03 21 38 12 264 3.50 0022 0058 2911 19 1.9 24 498 622

27/02/02 44400 6.1 20 200 20 0.031 03 21 38 12 264 350 0017 0058 2811 19 23 28 460 562

01/03/02 44400 6.7 24 150 28 0.031 03 21 38 12 26.4 3.50 0011 0084 5.192 18 2.8 3.7 420 549

Maputo 28/04/82 44400 28 13 25 35 0022 04 4 8 16 40 3.60 0002 0024 0957 13 5.5 8.8 113 221
15/07/82 44400 1.5 6 8 35 0022 04 4 8 16 40 3.60 0001 0005 0.204 14 7.2 10.0 58 80

06/04/82 44400 29 10 180 35 0022 04 4 8 16 40 3.60 0020 0014 0.566 12 3.0 3.0 540 547

19/04/82 44400 3.3 12 120 35 0022 04 4 8 16 40 360 0011 0020 0815 12 3.6 5.0 432 478

02/05/84 44400 3.4 13 70 28 0.022 04 4 8 16 40 360 0006 0024 1.196 13 3.9 58 273 337

17/05/84 44400 3.3 14 50 31 0022 04 4 8 16 40 3.60 0004 0028 1.253 13 5.0 6.2 200 311

20/05/84 44400 2.8 12 40 30 0022 04 4 8 16 40 3.60 0004 0020 0951 13 5.8 6.1 192 245

02/08/84 44400 28 11 49 31 0.022 04 4 8 16 40  3.60 0.005 0.017 0.773 13 3.9 5.6 191 273

Thames 07/04/49 44400 5.3 14 40 33 0.026 0.2 23 58.5 7.10 0.002 0014 0.597 6.3 9.0 252 359
Corantijn 02/07/65 44400 2 1 1995 35 0026 02 19 18 64 69  6.50 0117 0.009 0379 48 0.4 0.5 798 898
16/08/65 44400 22 12 680 35 0026 02 19 18 64 69 650 0036 0011 0451 53 0.8 0.7 544 498

08/12/78 44400 1.8 10 115 20 0.026 02 19 18 64 69  6.50 0.007 0008 0.549 5 1.0 1.2 115 137

14/12/78 44400 23 12 130 19 0026 02 19 18 64 69  6.50 0.007 0011 0832 55 1.2 1.2 156 153

20/12/78 44400 1.6 9 220 18 0.026 0.2 19 18 64 69  6.50 0.016 0006 0494 55 1.1 0.8 242 169

Sinnamary | 12/11/93 44400 2.6 10 148 26,5 0031 05 264 3 39 3.5 3.80 0.188 0013 0.708 28 3.4 5.6 503 685
27/04/94 44400 29 12 108 228 0.031 05 264 3 39 35 380 0.114 0019 1185 28 5.5 5.5 486 595

02/11/94 44400 2.7 1 106 20.1 0031 05 264 3 39 3.5 3.80 0.122 0016 0.780 32 6.5 5.2 689 556

03/11/94 44400 2.9 12 106 264 0031 05 264 3 39 3.5 3.80 0.112 0.019 1.024 31 5.5 5.3 583 566

Delaware 23/08/32 44400 1.7 8 120 32 0026 02 41 255 6.60 0.003 0005 0.216 1.2 0.9 144 111
04/10/32 44400 1.7 8 72 32 0026 02 41 255 6.60 0.002 0005 0.216 1.7 1.2 122 86
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but it is not so strange if we consider the reasons behind it. Pioneers in the development of
formulas to predict the intrusion length were the U.S. Army Corps of Engineers, and the Dutch
Ministry of Public Works, both of which were involved in the design of shipping access channels,
waterways and harbours, particularly in the Mississippi delta and the Rotterdam Waterway.
These channels, which were often man-made and artificially kept at depth, had a prismatic,
or near prismatic form. An important research question was what would happen to the salt
intrusion if these channels were deepened. As a result intensive laboratory experiments were done
at Waterways Experimental Station (WES) in Vicksburg, Mississippi and at Delft Hydraulics in
The Netherlands, all in flumes with a constant cross-section.

Since the early research on salt intrusion started in prismatic channels, this sort of set the
scene for further research, also the analytical research which did not have the drawback of having
to construct complicated flumes with a varying cross-section. Apparently, it is difficult to change
course once you are on a certain track. We shall see further on, however, that the formulas
derived for prismatic channels perform very poorly in natural channels. But let’s first see how
the equations derived above perform under prismatic conditions
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Figure 5.3: Measured and computed salt intrusion curves in the Pungué estuary: a) on
16/10/1993, b) on 27/2/2002. The draw lines are computed, the symbols indicate the mea-
surements.

Prismatic channels

In an estuary with constant cross-section, D decreases linearly in upstream direction (D =
Dy — KUjz), which follows directly from integration of Eq. (5.43) with A = A,. Substitution
into (5.45) and considering that S = Sy for = L yields the following expression:

_ DoAy
KQy
If this equation is combined with an empirical relation for the intrusion length L, then an

empirical relation is obtained for Dy or ag.

Rigter (1973), on the basis of flume data of the Waterways Experiment Station (WES),
arrived at the following empirical relation:

(5.62)

LLWS _ I.Sﬂ;—g(Fd_lN“l 17~ 4-7;—;F;1N—1 (5.63)
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Figure 5.4: Measured and computed salt intrusion curves in the Incomati estuary: a) on
05/09/1982, b) on 23/06/1993. The draw lines are computed, the symbols indicate the mea-
surements.

where hg is the tidal average depth at the estuary mouth, fp is the Darcy-Weisbach friction
factor (fp = 8g/C?), N is Canter Cremers’ estuary number defined in Section 2.1 as the ratio of
the fresh water entering the estuary during a tidal cycle (Q;7’) to the flood volume of salt water
entering the estuary over a tidal cycle, P;:

QT _UeT _ Us
P, E

N =

(5.64)

where Uy = Us(0) = Q/Ao and vy is the tidal velocity amplitude at the estuary mouth. In
(5.64), use has been made of (2.65) and (2.74). Finally, the densimetric Froude number Fy is
defined as: )
PV P12
F;= = __F
47 Apgho  Ap
where F is the Froude number (F = v/y/gh). It is observed that, since in alluvial estuaries both
N and F; are much smaller than unity, the number 1.7 in (5.63) can be disregarded, and that
Rigter’s intrusion length is inversely proportional to N and Fj.
Fischer (1974), in a discussion of Rigter’s results, and using the same data, derived the
following formula:

(5.65)

ho

LEWS =177 7065 F0TN-0-25 (5.66)
D

Van der Burgh (1972) made use of limited field observations in real estuaries: the Rotterdam
Waterway, the Schelde, the Haringvliet (a tidal branch of the Rhine-Meuse delta) and the Eems.
He reached at a quite similar relation as the earlier researchers. He found that the mean tidal
dispersion at the mouth obeyed the following relation:

DI4 = 26(Ng)°°hd*® (5.67)

In combination with Egs. (5.62), (5.64)and (5.65) this yields for prismatic channels:

26ho \/gho vo 0.5 ho
LTA = — N =26m—F N 05 5.68
K w 0 K (5.68)
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Figure 5.5: Measured and computed salt intrusion curves in the Limpopo estuary: a) on
24/07/1994, b) on 10/08/1994. The draw lines are computed, the symbols indicate the mea-
surements.

It is clear that, although Van der Burgh used F? instead of Fj, there is similarity between
the methods presented; most importantly, they are all linear in hy. Since the relative density
difference Ap over the intrusion length of a well mixed estuary does not significantly vary from
estuary to estuary - sea salinity being virtually the same everywhere (Ap=25kg/m?) -, and the
same applies to the roughness, which has been said to be low and not much different in the
various estuaries, the major difference between the methods lies in the exponents used for the
two bulk parameters: the Froude number F' and Canter Cremers’ number N. This was also
observed Van Os and Abraham (1990) who developed a formula similar to Rigter’s for use at
Delft Hydraulics:

LEWS — 4.4@Fd-1N ! (5.69)

fo

About the exponents in (5.69), it can be observed that the exponent of N is negative since the
salt intrusion length reduces if @y increases. Similarly, the intrusion length decreases with an
increase in the tidal velocity (F, 1 decreases with the second power of vy and N ! increases
linearly with vg), which is understandable since the salt intrusion length at LWS is short if F is
large.

Expression for the dispersion at the mouth and the salt intrusion length

Based on a large number of observations in real estuaries, a predictive expression for of’"'S, and
hence for the dispersion D{"'S can be obtained. The observations made over the years in 13
estuaries, worldwide, are summarised in Table 5.3.

As the earlier researchers did, a relation has been sought with non-dimensional parameters
affecting dispersion such as: the Canter Cremers number N, the densimetric Froude number
F4, and the Estuarine Richardson number N = N/Fjy, defined earlier in (2.36). The disper-
sion coefficient is made dimensionless dividing it by the tidal excursion and the tidal velocity
amplitude. This is the correct scaling, because the tidal excursion is the mixing length of the
longitudinal dispersion process and the velocity amplitude is the scale for the velocity of the shear
and subsequent mixing. As a result, the following empirical relation was obtained by Savenije
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(1993c):
D({IWS

_ ho 0.5
voEq = 1400 2 Ny (5.70)

Apparently, the HWS dispersion coefficient at the mouth DIW'S varies with the root of the
Estuarine Richardson number. Another prominent dimensionless ratio is h/a, which accounts
for the estuary geometry, which classical approaches neglect. It is interesting to note that the left
hand member is the inverse of a Péclet number, being the ratio of the advection to the dispersion
of a transport process. If the Péclet number is large (or when (5.70) is small) then advection
dominates over dispersion.
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Figure 5.6: Empirical relation between values of Dy at HWS computed with Equation 5.70 and
values obtained from calibration.

In (5.70) a weighed value of a has been taken for those estuaries that demonstrate two branches
in the function describing the longitudinal variation of the cross-sectional area. An average value
of a is taken, weighed between al and a2 over the intrusion length. For these estuaries the
weighed value is shown in Table 5.3. It can be seen that the longer the salt intrusion length is,
the closer a is to ag.

A plot of (5.70) against observations is presented in Fig. 5.6. We can see that this very
simple equation agrees surprisingly well with the observations, particularly taking into account
the inaccuracies present in both the geometry and the hydrology. Fig. 5.3 is a linear plot (not
logarithmic, which tends to reduce the scatter). The middle drawn line is the line of perfect
agreement, and it can be seen that line fits the data points for a wide range of values. The
Ry correlation coefficient equals 0.88, with a standard error of 106 m? /s, which is 30% of the
average value of the observations. Due to the large uncertainty in the determination of the fresh
water discharge, a large scatter in the data points is unavoidable. A relative error of 30% in the
determination of Dy could result form an error of 60% in Qy. In estuaries, an error of 60% in
determining the freshet may very well occur, particularly during low flow. Hence the relation
obtained is quite satisfactory. The only way to improve the reliability of (5.70) is by increasing
the number of data points still further.
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Van der Burgh’s coefficient

It appears not so easy to find an adequate predictive equation for Van der Burgh’s coefficient.
Since Van den Burg's K is not depending on time-dependent factors, but is a characteristic value
for a certain estuary, it would be logical to look for a relation between K and dimensionless
numbers defining the general state of the estuary, such as the geometry, tidal characteristics (e.g.
tidal damping) and channel roughness.

The following ratios have been correlated with K:

1. E/H, as a key tidal parameter that is related to the geometry through the Geometry-Tide
relation of (2.92);

2. E/C?, as a channel roughness indicator, which still has a time dimension, but since this
time dimension is governed by the tidal period inclusion is not significant;

(1 —ép), accounting for tidal amplification or damping;

. b/a, accounting for bottom slope, if present;

onos W

. E,/Aj, as a ratio of tidal excursion to convergence for the second branch (if applicable);
6. H/h, as a key relation between tide and estuary shape.

Where Aj is the cross-sectional area at z = 0 which is obtained by extending the second branch
of the exponential function of the cross-sectional area to z = 0. In single branch estuaries this
value is, of course, equal to Ag.
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Figure 5.7: Van den Burgh’s K computed by Equation 5.71 versus the values obtained from
calibration.

The data for the regression analysis are presented in Table 5.4. The following relation has
been obtained with a correlation coefficient R2=0.93, which is reasonable but not always accurate.
Surprisingly, the tidal range to depth ratio did not have a significant contribution in the multiple
regression. This is correct because all the other parameters of the Geometry-Tide equation are
already present in the regression analysis. We also see that tidal damping has a very strong
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impact on the value of K. Strongly damped estuaries with a high friction apparently have a
small value of K. We can understand this if we consider that a high damping and roughness
implies that a high amount of tidal energy is converted into mixing, which results into a relatively
high importance of tidal mixing and relatively low importance of gravitational mixing.

Fig. 5.7 presents the relation between calibrated values obtained in the various estuaries and
the computed values with the following equation:

0.65 0.39 0.58 0.14
K=03%10"° (g) <%) (1- 5b)‘2'°(§) (f,ao) (5.71)

We should keep in mind that the value of K should always be between zero and unity. The
equation does not provide for that. We can see that K is particularly sensitive to tidal damping,
channel roughness, and the tidal excursion. This equation should be used with caution. Its
predictive value is weak. It should be used as a first estimate of K. Subsequently, a moving boat
survey on a HWS or LWS situation will provide a more reliable value for K.

Table 5.4: Parameters used for the equation to predict Van der Burgh’s coefficient.

Estuary K T H, E, f c? a b Aj h Oy

(s) (m) (km) (m/s?) (km) (km) (10°m?) (m) (10 °m?)
Mae Klong 0.3 44400 2 14 0.028 2809 102 155 1.4 520 -5.20
Lalang 0.65 86400 3 31 0.023 3481 217 96 2.55 10.60 -1.00
Limpopo 0.5 44400 1.1 8 0.026 3025 130 50 1.34  7.00 1.70
Tha Chin  0.35 86400 2 15 0.039 2025 87 87 1.38  5.30 -9.40
Chao Phya 0.75 86400 2.4 26 0.031 2500 109 109 53 T7.20 -3.60
Incomati 0.15 44400 1.4 7 0.022 3600 42 42 1.75  2.90 -13.0
Pungue 0.3 44400 6.3 20 0.031 2500 21 21 26.4  3.50 -8.50
Maputo 0.38 44400 2.8 13 0.022 3600 16 16 6.46  3.60 1.00
Thames 0.2 44400 5.3 14 0.026 3025 23 23 58.5  7.10 2.30
Corantijn 0.21 44400 2 11 0.026 3025 64 48 35.6  6.50 1.70
Sinnamary 0.45 44400 2.6 10 0.031 2500 39 39 1.21  3.80 1.00
Gambia 0.6 44400 1.2 10 0.031 2500 121 121 27.2 8.7 -1.00
Delaware 0.22 44400 1.7 8 0.026 3025 41 42 255  6.60 1.70
Schelde 0.25 44400 4 12 0.026 3025 28 28 150  10.50 3.80

5.5.2 The predictive model compared to other methods
Combination of the empirical (5.70) with (5.47) and (5.48) yields:

hoEo’Uo
LHWS = qln ( 1400 N§®+1 5.72
a Ka2 UO R + ( )
Since on the interval z(0,1): In(z+1)= z, as a first order approximation, (5.72) can be simplified
to facilitate comparison with the results of earlier researchers:

ho Eovo

LIWS ~ 1400~ N§® 5.73

K an R ( )
But this is seldom the case: only in prismatic channels. However, the earlier researchers based
their theory on estuaries with constant cross-section, or estuaries where a — oco. Hence (5.73)
may be compared with the work of these researchers. Elaboration yields:

hoEg
a

LHWS ~ 14007 F,05N-05 (5.74)
The correspondence with the relations obtained by Rigter (1973), Fischer (1974) and Van Os
and Abraham (1990) presented in (5.63), (5.66) and (5.69) is high, but it is highest with Van der
Burgh’s relation, (5.68). The difference with Van der Burgh'’s, besides the logarithmic function of
(5.72), lies in the use of E/a. The tidal excursion is a very important longitudinal mixing length
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scale, and the convergence length a accounts for the lateral mixing through residual ebb and flood
currents. If the estuary has a more pronounced funnel shape (a is small), this results in a large
salt intrusion. Apparently the salt intrusion through lateral mixing is easier in a funnel shaped
estuary than in a prismatic estuary. This corresponds with what one would think intuitively.
Hence the new formula takes better account of the topography, through the logarithmic function,
and of the main mixing processes: Np for gravitational circulation; E for longitudinal circulation
through trapping; and a for lateral circulation between ebb and flood channels.
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Figure 5.8: Comparison of various predictive models for the salt intrusion length at HWS.

In Fig. 5.8 the different predictive formulas for the salt intrusion length at HWS are compared
for the estuaries studied. The data are presented in Table 5.5. It can be clearly seen that the new
method predicts the salt intrusion length quite adequately, and much better than other methods.

Conclusion

The set of estuaries studied covers a wide range of dispersion coefficients as can be seen from Fig.
5.6. The relation obtained is quite acceptable and is a considerable improvement over classical
methods. The application of the steady state model in 15 estuaries with quite different tidal
and geometrical characteristics has proven successful. The empirical relations for @ and K turn
the technique into a predictive method which can be used as a management tool to evaluate the
effect of changes in the hydrology or the geometry of the estuary involved.

5.6 Unsteady state model

5.6.1 System response time

In Section 5.4 expressions have been derived for the system response time as a function of the
steady state salinity distribution S(z). The first expression (Tk) is based on equating the un-
steady salinity variation to the variation of the salinity between subsequent steady states as a
result of fresh water flow depletion, which yielded (5.34). In this case, the system is assumed to
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Table 5.5: Measured and predicted salt intrusion length in different estuaries

Estuary | date Hy Ey Qs f Ay h N F, F; Lyws Savenije Rigter Fischer V.Os Burgh
(m) (km) (m'/s) (10° m?)  (m) (km) (m) — (km)  (km) (km) (km)

Mae Klong | 20/01/77 2.0 11 120 0.028 14 52 067 000 016 29 22 18 15 19 34
08/03/77 1.5 10 60 0.028 14 52 019 0.01 046 23 22 19 12 19 35

09/04/77 2.0 14 36 0.028 14 52 0.08 002 093 35 32 24 16 25 40

Solo 26/07/88 0.8 9 50 0.023 207 92 023 000 005 30 24 180 34 172 74
08;09[88 0.4 5 7 0.023 207 9.2 006 0.00 0.01 39 46 2242 89 2102 252

Lalang 20/10/89 2.6 27 120 0.023 255 106 015 001 0.52 33 30 52 32 53 46
Limpopo 04/04/80 1.1 7 150 0.026 171 7 056 000 017 22 21 19 12 20 27
31/12/82 1.1 8 2 0.026 171 7 001 000 019 64 83 1054 23 989 196

22/04/83 0.5 4 1 0.026 171 7 001 000 005 71 80 3953 45 3703 386

24/07/94 09 6.8 2 0.026 171 7 002 000 014 55 57 498 21 468 135

10/08/94 1.0 7.1 2 0.026 1.71 7 001 000 015 60 69 792 23 744 170

Tha Chin 16/04/81 1.6 12 55 0.039 3 53 013 000 020 45 39 36 16 35 58
27/02/86 2.6 20 40 0.039 3 53 003 004 174 43 45 31 21 32 4

01/03/86 1.8 14 40 0.039 3 53 008 000 021 54 47 51 18 50 63

13/08/87 2.0 15 39 0.039 3 53 004 002 112 40 40 29 16 29 47

Chao Phya | 05/06/62 2.2 22 63 0.031 53 7.2 006 001 044 51 43 63 26 62 43
17/03/80 1.5 18 43 0.031 53 7.2 005 001 027 64 49 101 24 97 51

28/03/80 1.7 20 31 0.031 53 7.2 003 001 031 72 59 130 26 125 57

29/01/83 24 26 90 0.031 53 7.2 007 001 054 53 42 53 29 53 37

23/02/83 1.6 19 100 0.031 53 7.2 011 001 034 44 33 47 23 47 37

16501 /8T 25 15 180 0.031 53 7.2 024 000 029 27 20 28 19 29 30

Incomati 30/07/80 14 7 3 0.022 81 29 0.00 001 038 53 61 712 12 668 327
05/09/82 14 7 2 0.022 81 29 0.00 001 034 68 67 1164 13 1092 400

10/02/83 1.2 8 1 0.022 81 29 0.00 001 045 89 9 2034 14 1906 529

23/06/93 14 8 4 0,022 81 29 0.00 001 045 50 61 514 12 482 266

07/07[93 2.6 9 4 0,022 81 29 0.00 0.01 057 50 63 458 13 431 252

Pungue 26/09/80 6.3 20 22 0.031 264 3.5 0.00 006 240 84 91 137 21 131 95
26/05/82 5.0 10 50  0.031 264 3.5 001 001 064 61 80 107 12 102 84

06/08/82 5.2 14 36 0.031 264 35 000 003 117 65 85 116 16 110 86

22/09/82 5.2 14 26 0.031 264 35 000 003 114 73 87 160 16 152 100

29/10/82 6.0 16 60 0.031 264 35 001 004 153 64 83 69 17 67 65

03/10/93 5.3 15 10 0.031 264 35 000 003 131 81 9“4 371 17 349 153

12/10/93 3.8 15 10 0.031 264 35 000 003 129 70 93 376 17 353 153

16/10/93 6.4 16 10 0.031 264 35 000 004 147 92 95 354 18 333 148

31/01/02 6.2 20 262 0.031 264 3.5 002 006 291 47 35 27 21 28 35

27/02/02 6.1 20 200 0.031 264 35 002 006 281 49 37 30 21 30 38

01 503[02 6.7 24 150 0.031 264 3.5 001 008 519 56 40 35 25 35 42

Maputo 28/04/82 28 13 25 0.022 40 3.6 0.00 0.02 0.96 30 43 391 16 369 106
15/07/82 1.5 6 8 0.022 40 3.6 0.00 001 020 40 44 2576 18 2413 263

06/04/82 29 10 180  0.022 40 3.6 002 001 057 25 28 7 13 74 47

19/04/82 3.3 12 120 0.022 40 3.6 0.01 0.02 0.82 27 31 96 14 92 53

02/05/84 34 13 70 0.022 40 3.6 001 0.02 1.20 28 34 120 15 115 66

17/05/84 3.3 14 50 0.022 40 3.6 0.00 0.03 1.25 28 37 169 16 160 7

29/05/84 28 12 40 0.022 40 3.6 0.00 0.02 095 32 37 231 15 218 88

02/08/84 28 11 49 0.022 40 3.6 0.00 0.02 0.77 28 36 212 14 201 83

Thames 07/04/49 5.3 14 40 0.026 585 7.1 0.00 0.01 0.60 101 109 1005 22 944 491
Corantijn 02/07/65 2.0 11 1995 0.026 69 6.5 012 001 038 50 53 36 15 36 76
16/08/65 2.2 12 680 0.026 69 6.5 0.04 001 045 71 7 81 17 79 121

08/12/78 1.8 10 115 0.026 69 6.5 0.01 001 055 84 92 298 16 281 311

14/12/78 2.3 12 130 0.026 69 6.5 0.01 001 083 91 92 213 16 202 269

20/12/78 1.6 9 220 0.026 69 6.5 0.02 0.01 049 88 73 158 14 151 238

Sinnamary | 12/11/93 2.6 10 148 0.031 35 38 019 001 071 10 12 13 11 14 18
27/04/94 29 12 108 0.031 35 38 011 002 119 10 13 15 13 16 20

02/11/94 2.7 11 106 0.031 35 38 012 002 078 16 13 16 12 17 20

03/11/94 29 12 106 0.031 35 38 011 002 102 15.5 13 16 13 17 20

Delaware 23/08/32 1.7 8 120 0.026 255 6.6 0.00 0.00 022 146 136 2122 24 1989 633
04/10/32 1.7 8 72 0.026 255 6.6 0.00 000 022 159 146 3533 26 3310 816
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be in a state of 90% equilibrium if T < 0.1, where Tj, is the time scale for the fresh water
flow depletion. The second way of deriving a system response time scale is by using the time
scale T's needed to attain a new equilibrium condition, yielding (5.39). These equations are made
dimensionless by comparing them to the flushing time scale T: (5.41). Both T's and Tk require
an expression for S(z). After the derivations made in Section 5.5, this expression is available.
Savenije (1992b), taking X = L/2 performed the integration of these equations for integer
values of 1/K, which are not repeated here. If 1/K is not an integer number, the equations can
only be solved numerically. As an example the analytical equations for K=0.5 are presented:

_ 2BaAy £ (1+28)-1
@ (1-8(exp(f) - 1)
_ B(L+B)adpexp(5:) —exp(—3) — &
@ (1-8(exp (5) - 1)°
As L/a can be written as a function of 3, using (5.48), these are functions of 8 and Qy. Since 3

is also essentially function of @y, because Dy, is a function of Qy, the time scales are primarily
driven by the freshet. Also the expression for T of (5.41) can be written as a function of j.

Combination leads to the dimensionless time-scales:

Tk

S if K =05 (5.75)

Ts if K =05 (5.76)

Tk = (1+28)-1 .
—=28(1+p8)—2 ; if K =05 (5.78)
; (1-B(ew (&) -1)"
Ts seaxp (52) —exp(—32) — % .
== =B(1+8) (if K =05 (5.79)
7y (1-Bew(k)-1)

Table 5.6: System response time in the dry season, in relation to water particle travel time Tf
and hydrological time scale.

Estuaries K h a A6 QD L L/a ﬁ T/ TK/T}' Ts/T] TK Ts TQ
(m) (km)  (m?) (m®/s) (km) (days) (days) (days) (days) (days) (days)
Mae Klong 0.30 5.2 102 1400 30 26 0.25 3.44 12 0.55 0.12 7 1 reg
Solo 060 9.2 226 2070 10 35 015 5.97 78 0.63 0.19 49 15 reg
Lalang 0.65 10.6 217 2550 50 65 030 2.86 33 0.58 0.19 19 6
Limpopo 050 7.0 130 1400 5 60 046 1.70 156 0.53 0.16 82 26 45
Tha Chin 035 5.3 87 1380 10 70 0.80 0.81 77 0.43 0.13 33 10
Chao Phya 0.75 7.2 109 4300 30 50 046 1.72 67 0.53 0.21 35 14
Incomati 0.15 3.0 42 1520 1 50 119 0.44 514 0.36 0.07 185 36 36
Pungue 030 5.3 20 28000 20 70 3.50 0.03 314 0.09 0.08 28 25 226
Maputo 038 3.6 16 6460 10 40 2.50 0.09 110 0.16 0.11 18 12 103
Thames 020 7.1 23 58500 20 90 3.91 0.02 763 0.08 0.06 61 46 50
Corantijn 021 6.5 64 34600 500 50 0.78 0.84 28 0.43 0.09 12 3 58
Sinnamary  0.45 10.0 35 4000 100 16 046 1.73 6 0.60 0.19 4 1
Gambia 0.60 8.7 121 27200 2 300 248 0.09 17450 0.15 0.13 2618 2269 42
Schelde 0.25 10.0 26 150000 90 110 5.23 0.01 494 0.06 0.06 30 30 124
Delaware 022 6.6 41 255000 300 140 341 0.03 390 0.1 0.07 39 27 101

Because L/a is a sole function of 3, these equations can be written as sole functions of 3
as well. In Table 5.6 the values of Ts, Tx and T have been presented and compared, for the
various estuaries under a minimum flow Qo, together with values of Ty, where available. The
values of Tx and Ts indicate the same pattern. It can be seen that in several cases Tx < T
(Pungue, Maputo, Corantijn, Schelde and Delaware) but that in other cases Tk > T (Limpopo,
Incomati, Thames and Gambia). The value of T is larger than Ty, only in the Gambia, and
in the Incomati they are equal. Of these estuaries, the Gambia is clearly in unsteady state, the
Incomati, the Limpopo and Thames are on the limit. For the Limpopo and Incomati, unsteady
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state occurs only during the lowest minimum flow. Since both the values of T and Ts are
inversely proportional to the root of @, a modest increase in the discharge would bring about
equilibrium (see Savenije 1992a). In applying the steady state model to the lowest flow situation,
where equilibrium is not completely reached, we obtain a conservative estimate of the actual salt
intrusion length, which is not so bad. Moreover, the Thames, the Limpopo and the Incomati
have minimum flows which are regulated as a result of reservoir release and upstream withdrawal.
Therefore, the time scale of regulated flow is much longer during minimum flow than the time
scale of the natural recession curve. So the use of the steady state model in these estuaries is
acceptable, even during low flow.

Hence, of all estuaries studied, the only estuary where the steady state model cannot be
applied is The Gambia. This estuary will be used to demonstrate the unsteady state model.

5.6.2 Unsteady state dispersion

It has been mentioned that the steady state dispersion coefficient Dgg is not necessarily the same
as the unsteady state dispersion coefficient D. This is particularly important in estuaries where
the system lags considerably behind the steady state situation, as is the case in the Gambia.

It should be born in mind that none of the expressions in use for the dispersion is completely
correct, physically; even the one-dimensional dispersion equation itself lacks a full physical basis.
All equations in use for D(z) are (at least partially) empirical, whether they are considered
constant, a function of 8S/dx Thatcher and Harleman (1972), or a function of (9S/dz)? (Chatwin
and Allen, 1985). In Chapter 4 it has been shown that the method where D is proportional to
SK can safely be added to this list and that it has a wide range of applicability.

Depending on which method is used to determine the dispersion, the unsteady state model
will react differently. If the dispersion is computed on the basis of 8S/0z, (0S/0z)? or S¥, then,
in a state of disequilibrium (unsteady state), the dispersion is different from the steady state
dispersion, D # Dgg, simply because the salinity distribution is different. Such a method is a
“status quo” method; it uses the dispersion that corresponds to the present salinity distribution,
irrespective of whether the system is in equilibrium or not. Here “status quo” equation applied

to the unsteady state would read:
D s\ X
— == 5.80
>-(3) (5.50)

If however, a steady state model for the dispersion is used, e.g. Van der Burgh’s method where
the gradient of the steady state dispersion is inversely proportional to the cross-sectional area,
then the outcome is different. The use of the steady state equation leads to a simulation where
the dispersion coefficient used corresponds with the ultimate state of equilibrium that would
occur if the discharge were maintained constant over a sufficiently long period. The steady state

dispersion reads:
DD—SOS =1-8 (exp (g) - 1) (5.81)

If we use a steady state dispersion model to a situation of unsteady state, we implicitly assume
that the main factors describing the dispersion are time-invariant (e.g. the geometry and key
hydraulic parameters, such as channel roughness, the ratio E/H, the phase lag &, or the tidal
damping), or that (unlike the salinity itself) the dispersion reacts directly to a change in the
river discharge (much like the mass balance which affects buoyancy). Particularly, if dispersion
is mostly driven by residual circulation, which depends on tidal characteristics and geometry,
then this would be an acceptable approach. If, however, the dispersion is mostly density-driven,
depending on the salinity gradient, then the application of (5.80) to the unsteady state would
be best. In reality, dispersion is a combination of both mechanisms, and hence a combination of
(5.80) and (5.81) appears the best approach.

Consider the hypothetical case where the fresh water discharge is suddenly decreased from Qg
to Q1 and where the salinity distribution needs considerable time to adjust to the new situation.
A 7status quo” method which computes the dispersion on the basis of the instantaneous longi-
tudinal salinity distribution would then, for some time, continue to use a dispersion coefficient
that corresponds essentially to a situation where @ = Q. The “ultimate equilibrium” method,
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however, would immediately after the decrease in the discharge start to use a dispersion that cor-
responds with Q = Q1, which at the toe of the intrusion curve leads to more dispersion. Hence,
the “status quo” method reacts considerably slower than the “ultimate equilibrium” method in
adjusting itself to the new situation.

Application of the ”status quo” (5.80), has the disadvantage that dispersion is blocked at the
toe of the salt intrusion curve. Application of the “ultimate equilibrium” method, however, has
the disadvantage of too much dispersion at the toe of the salt intrusion curve. Which of the two
approaches is the best is difficult to say, and moreover irrelevant as neither of the methods is
physically completely ”correct”.

The method followed here is a practical one based on experiences gained with the Gambia
estuary. The best result was obtained with an intermediate method that interpolates between the
“status quo” dispersion and the “ultimate equilibrium” dispersion. With this method the model
gradually converges to the steady state situation. A weighting factor is used as a calibration
coefficient. In the case of the Gambia, equal weights were given to the “status quo” and “ultimate
equilibrium” dispersion.

A special situation occurs when the fresh water discharge at the estuary mouth becomes
negative, as may be the case when the net evaporation from the estuary surface exceeds the fresh
water inflow into the estuary. The equation for the boundary condition DF"S | (5.70), then no
longer applies. For that situation, the dispersion of the ”ultimate equilibrium” is assumed to be
constant. The value that best fits the measurements is found through calibration. This special
situation is only important in estuaries where evaporation plays an important role, as is the case
in the estuaries discussed in the following sections: the Gambia, the Saloum, and the Casamance.

5.6.3 Application of the unsteady state model

An unsteady state equation can be solved using a six-point implicit finite difference scheme as
suggested by Fischer et al. (1979). The unsteady state model makes use of the unsteady state
equation that involves rainfall and evaporation, (5.24), in combination with Van der Burgh’s
equation, (5.43). Combination of these equations yields:

s Q. 9

sy~ - K) A ag

P,bds D os 0%s P,
—(I—K)TsTa—z-i-;a—x—Dw-i-Tsh—os—O (5.82)

This equation can be written as:

0s O0s 0%s P,

TS— —q— — —+Tshos=0 (5.83)

ot Oz 0x2
with
Q,+rsBP,b D
A a
In the six-point finite differences scheme, this equation is for each time-step converted into a
tridiagonal matrix of z-dependent coefficients, which can be solved by a Gaussian elimination
method, as described by (Carnahan et al., 1969, pp.440-442). Details are described in Savenije
(1992a).

The model functions very efficiently and has been successfully applied in the Gambia (Risley
et al., 1993; Savenije, 1988), the Schelde, the Saloum and the Casamance (Savenije and Pagés,
1992). The application in the Gambia is presented below. The application in the Saloum and
Casamance are presented in the Section 5.7.

7= (1-K) (5.84)

5.6.4 Application to the Gambia estuary

Table 5.1 indicates that evaporation is important in the salinity distribution along the Gambia
estuary. The question however is how important the effect is in quantitative terms. In Fig. 5.9a
the calibration of the unsteady state model without the influence of rainfall and evaporation, is
shown against the longitudinal salinity distribution measured (thick lines) at different times dur-
ing the hydrological year 1972/73 (Savenije, 1988). It should be observed that the measurements
have been carried out somewhat haphazardly, not taking into account the time of day (HWS,
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Figure 5.9: Computed and measured longitudinal salt intrusion distribution in the Gambia
estuary, a) not taking into account net rainfall, b) taking into account net rainfall (after: Savenije,
1988).

LWS or TA) which may lead to a position error of about 5 km. However, it is clear from Fig.
5.9a that the maximum intrusion at the end of May in the central part of the salt intrusion curve
is not reached, and that the minimum intrusion reached by the model at the end of September
is too high.

The position of the toe of the salt intrusion curve (the point where s ~ Sy), however, is
correctly modelled, which is illustrated by Fig. 5.10a. This figure follows the location of the toe
of the salt intrusion curves (s=1 kg/m?®) with time. The problem faced, at that time, was to
improve the fit of the longitudinal distribution, while not affecting the total salt intrusion length.
The solution to this problem was the incorporation of r, the net rainfall, which is the difference
between rainfall and evaporation. The toe of the curve is not directly affected by r either through
the third term of (5.25), since ds/8z=0 at the toe, or through the sixth term, since s=0 at the
toe. It is only indirectly affected by an increase of the salinity in the central part of the estuary,
which, through dispersion, propagates upstream. Fig. 5.10b shows the position of the toe of the
salt intrusion if the effect of rainfall and evaporation is taken into account. Figs. 5.10a and 5.10b
are essentially the same. The only apparent difference between the figures lies in the discharge
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Figure 5.10: Computed and measured intrusion length and discharge to the sea in The Gambia
estuary a) not taking into account net rainfall; b) taking into account net rainfall (after: Savenije,
1988).

of fresh water to the ocean.

Fig. 5.9b shows the longitudinal distribution after inclusion of the rainfall terms. The fit,
although not perfect, is certainly better than in Fig. 5.9a. It can be seen that the upstream and
downstream limits of the intrusion are essentially at the same position, but that the curves have
become more concave in the dry season, as a result of excess evaporation, and less concave in
the wet season, as a result of excess rainfall. The difference in runoff at the estuary mouth is
considerable as a result of rainfall and evaporation, as can be concluded from comparing Figs.
5.10a and 5.10b.

The notion that evaporation played an important role in the Gambia estuary was strongly
supported by Pagés and Citeau (1990) who stated that the Sahelian estuaries: Gambia, Sénégal,
Casamance and Saloum, in that order, were all turning more and more saline due to the drought
of the eighties. In the Sénégal the salinity was affected in much the same way as in the Gambia,
but the Saloum and Casamance functioned as hypersaline estuaries.
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5.7 Hypersaline estuaries

An estuary may become hypersaline if the salt flux F is not sufficient to evacuate the salt
accumulation resulting from evaporation. The fresh water discharge of the Gambia is still too
large for the estuary to become hypersaline, but the two estuaries bordering the Gambia to the
North and to the South, the Saloum and the Casamance, are strongly hypersaline.

The Saloum has always been hypersaline. Measurements in the Saloum near a salt production
farm go as far back as 1965 (Pagés and Citeau, 1990). The Casamance, however, although
strongly influenced by evaporation, has only become hypersaline during the Sahelian drought,
which started in the late 1970s. Around 1980, an ecological disaster took place in the Casamance.
The fresh and brackish habitats turned hypersaline (up to 100 kg/m3), blocking off migration
routes for migrant species and stunting the growth of otherwise salt tolerant vegetation (Savenije
and Pagés, 1992).
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Figure 5.11: Computed and measured salinity variation along the Saloum estuary (after: Savenije
and Pagés, 1992).

Fig. 5.11 shows model results of the Saloum against measurements at three locations along
the estuary. It can be seen that pronounced hypersaline conditions have always existed due to
the ephemeral character of the rivers entering the estuary. The fit of the model is not perfect.
This is largely due to the lack of data on fresh water discharge into the estuary. A simple hydro-
logical model had to be made on the basis of rainfall data to simulate inflow series. Moreover,
hydrographic data on cross-section and depth were scarce. Since the effect of evaporation on
salt accumulation, to a large extent, depends on the depth (see (5.25)), this lack of information
strongly limits the accuracy of the model. In qualitative terms, however, the model is quite reli-
able, as can be judged from the longitudinal profiles presented in Fig. 5.12, where a comparison
is made between measured and modelled salinities.

Figs. 5.13 and 5.14 show similar graphs for the Casamance estuary. In the Casamance it
can indeed be seen that since the start of the Sahelian drought the environment has completely
changed from a normal estuary into a hypersaline estuary. Until the year 1981, the estuary, at
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Figure 5.12: Computed and measured longitudinal distribution of the salinity along the Saloum
estuary (after: Savenije and Pagés, 1992).

a distance of 180 km from the mouth, turned fresh annually. After that time serious saliniza-
tion took place, which is dramatically illustrated by Fig. 5.14 in the longitudinal profile. The
difference between the situations of 1978 and 1984 is striking.

Although data on fresh water inflow were available in the Casamance, the lack of reliable
data on depths and cross-sections seriously hampered the calibration. Nevertheless, it appeared
possible to apply the methodology described in this study to an extreme situation for which
it had not been developed originally. Given the limited amount of data available, the model
performs well.

5.8 Concluding remarks on the analytical salt intrusion
model

In this chapter a predictive model for salt intrusion in well-mixed alluvial estuaries has been pre-
sented. In most cases the equation for steady state can be applied to the HWS situation, yielding
a very simple equation to predict the intrusion length: (5.72). This equation is physically based
in that it relates to the main driving mechanisms for salt intrusion: the gravitation circulation
(determined by the Estuarine Richardson Number), and the residual circulation (determined
mainly by E/a). Also in the unsteady state situation the method provides a useful tool, which
is demonstrated by application in the Gambia and in hypersaline estuaries, such as the Saloum
and the Casamance.

The strength of the method lies in its simplicity, while retaining its physical basis. The disad-
vantage of the method is that it requires a simplified topography. In cases where the topography
is complex, one may have to rely on a two-dimensional model. But such models require large
amounts of data. Even in case a more complex model is required, the one-dimensional model
presented here can provide valuable information for the organisation of a hydrometric survey:
with the one-dimensional model one can see which variables are most important and in which
density of observation.
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The analytical model is especially powerful in combination with other models, such as mor-
phological models, water quality models or ecological models that requiring knowledge on salinity
distribution or density gradients. In estuaries, the mixing and transport of pollutants is driven
by exactly the same equations as used in this chapter. As a result, the analytical model is an
important tool to assess the spread and fate of pollutants in estuaries as well.
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Figure 5.13: Computed and measured salinity variation along the Casamance estuary (after:
Savenije and Pagés, 1992).
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Figure 5.14: Computed and measured longitudinal salinity distribution along the Casamance
estuary (after: Savenije and Pagés, 1992).
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